Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography

[1]  M. Muhler,et al.  Spectroscopic evidence for the partial dissociation of H2O on ZnO(1010). , 2006, Physical chemistry chemical physics : PCCP.

[2]  Iwao Nishiyama,et al.  Model of Ru surface oxidation for the lifetime scaling of EUVL projection optics mirror , 2006, SPIE Advanced Lithography.

[3]  Saša Bajt,et al.  EUV testing of multilayer mirrors: critical issues , 2006, SPIE Advanced Lithography.

[4]  Peter Feulner,et al.  Stability of water monolayers on Ru(0001) : Thermal and electronically induced dissociation , 2005 .

[5]  E. Lundgren,et al.  Ru(0001) model catalyst under oxidizing and reducing reaction conditions: in-situ high-pressure surface X-ray diffraction study. , 2005, The journal of physical chemistry. B.

[6]  T. Kondo,et al.  Initial growth of the water layer on (1 x 1)-oxygen-covered Ru(0001) in comparison with that on bare Ru(0001). , 2005, The journal of physical chemistry. B.

[7]  Atsushi Masuda,et al.  Contamination removal from EUV multilayer using atomic hydrogen generated by heated catalyzer , 2005, SPIE Advanced Lithography.

[8]  G. Materzanini,et al.  Water adsorption at metal surfaces: A first-principles study of thep(3×3)R30°H2Obilayer on Ru(0001) , 2005 .

[9]  A. Seitsonen,et al.  Hydrogen transfer reaction on the surface of an oxide catalyst. , 2005, Journal of the American Chemical Society.

[10]  E. Lundgren,et al.  Understanding the structural deactivation of ruthenium catalysts on an atomic scale under both oxidizing and reducing conditions. , 2005, Angewandte Chemie.

[11]  K. Hamamoto,et al.  Cleaning of extreme ultraviolet lithography optics and masks using 13.5nm and 172nm radiation , 2005 .

[12]  D. Marx,et al.  Partial dissociation of water leads to stable superstructures on the surface of zinc oxide. , 2004, Angewandte Chemie.

[13]  R. Adzic,et al.  Growth of RuO2 by electrochemical and gas-phase oxidation of an Ru(0001) surface , 2004 .

[14]  A. Mikkelsen,et al.  Experimental evidence for a partially dissociated water bilayer on Ru[0001]. , 2004, Physical review letters.

[15]  H. Ogasawara,et al.  Water dissociation on Ru(001): an activated process. , 2004, Physical review letters.

[16]  M. Muhler,et al.  On the nature of the active state of supported ruthenium catalysts used for the oxidation of carbon monoxide: Steady-state and transient kinetics combined with in situ infrared spectroscopy , 2004 .

[17]  Wolfgang Pannhorst,et al.  Optimized glass-ceramic substrate materials for EUVL applications , 2004, SPIE Advanced Lithography.

[18]  E. Wang,et al.  Water adsorption on metal surfaces: A general picture from density functional theory studies , 2004 .

[19]  S. Haq,et al.  Intact and dissociative adsorption of water on Ru(0 0 0 1) , 2004 .

[20]  A. Alavi,et al.  Insight into H 2 O -ice adsorption and dissociation on metal surfaces from first-principles simulations , 2004 .

[21]  W. Raróg-Pilecka,et al.  Isotopic Transient Analysis of Ammonia Synthesis over Ba or Cs-Promoted Ru/Carbon Catalysts , 2004 .

[22]  Andrew Aquila,et al.  Design and performance of capping layers for extreme-ultraviolet multilayer mirrors. , 2003, Applied optics.

[23]  L. Sanche,et al.  Dissociative electron attachment and charge transfer in condensed matter , 2003 .

[24]  Thomas Bock,et al.  EUV time-resolved studies on carbon growth and cleaning , 2003, SPIE Advanced Lithography.

[25]  Kenneth A. Goldberg,et al.  Effects of radiation-induced carbon contamination on the performance of an EUV lithographic optic , 2003, SPIE Advanced Lithography.

[26]  E. Savchenko,et al.  Exciton-induced lattice defect formation , 2003 .

[27]  L. Sanche,et al.  Reactions induced by low energy electrons in cryogenic films (Review) , 2003 .

[28]  H. Conrad,et al.  Interaction of H2O with the RuO2(110) surface studied by HREELS and TDS , 2003 .

[29]  M. Clift,et al.  Radio-frequency discharge cleaning of silicon-capped Mo/Si multilayer extreme ultraviolet optics , 2002 .

[30]  U. Starke,et al.  Spectral and spatial anisotropy of the oxide growth onRu(0001) , 2002 .

[31]  A. Seitsonen,et al.  Oxidation of Metal Surfaces , 2002, Science.

[32]  W. M. Clift,et al.  Improved reflectance and stability of Mo-Si multilayers , 2002 .

[33]  Michael E. Malinowski,et al.  Studies of EUV contamination mitigation , 2002, SPIE Advanced Lithography.

[34]  Hans Meiling,et al.  Molecular contamination mitigation in EUVL by environmental control , 2002 .

[35]  Roxann L. Engelstad,et al.  Emerging Lithographic Technologies VI , 2002 .

[36]  Michael A. Henderson,et al.  The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited , 2002 .

[37]  G. Ertl,et al.  The kinetics of CO oxidation on RuO2(110): Bridging the pressure gap , 2002 .

[38]  W. M. Clift,et al.  Radiation-induced protective carbon coating for extreme ultraviolet optics , 2002 .

[39]  Dietrich Menzel,et al.  Water on a Metal Surface , 2002, Science.

[40]  P. Feibelman Partial Dissociation of Water on Ru(0001) , 2002, Science.

[41]  G. Ertl,et al.  Characterization of Various Oxygen Species on an Oxide Surface: RuO2(110) † , 2001 .

[42]  J. Braat,et al.  Capping layers for extreme-ultraviolet multilayer interference coatings. , 2001, Optics letters.

[43]  G. Comelli,et al.  Oxygen adsorption and ordering on Ru ( 101 ¯ 0 ) , 2001 .

[44]  A. Seitsonen,et al.  Epitaxial growth of RuO2(100) on Ru(10-10): Surface structure and other properties , 2001 .

[45]  G. Ertl,et al.  Electrochemical versus gas-phase oxidation of ru single-crystal surfaces , 2000 .

[46]  H. Conrad,et al.  Characterization of oxygen phases created during oxidation of Ru(0001) , 2000 .

[47]  Varga,et al.  Atomic-scale structure and catalytic reactivity of the RuO(2)(110) surface , 2000, Science.

[48]  A. Böttcher,et al.  FORMATION OF SUBSURFACE OXYGEN AT RU(0001) , 1999 .

[49]  S. Chaturvedi,et al.  Chemistry of SO2 on Ru(001): formation of SO3 and SO4 , 1998 .

[50]  Noriaki Itoh,et al.  Materials modification by electronic excitation , 1998 .

[51]  J. Yates,et al.  Oxidation of Al(111) by electron impact on adsorbed H2O , 1998 .

[52]  T. Orlando,et al.  Production of O2 on icy satellites by electronic excitation of low-temperature water ice , 1998, Nature.

[53]  T. Orlando,et al.  The role of excitons and substrate temperature in low-energy (5–50 eV) electron-stimulated dissociation of amorphous D2O ice , 1997 .

[54]  T. Orlando,et al.  Electron-stimulated desorption of D− (H−) from condensed D2O (H2O) films , 1997 .

[55]  T. Orlando,et al.  Low-Energy (5−40 eV) Electron-Stimulated Desorption of Atomic Hydrogen and Metastable Emission from Amorphous Ice , 1997 .

[56]  M. Scheffler,et al.  Anomalous behavior of Ru for catalytic oxidation: A theoretical study of the catalytic reaction CO + 1/2 O_2 -> CO_2 , 1997, cond-mat/9702040.

[57]  M. Koch,et al.  The influence of steps on the water-formation reaction on Ru(001) , 1996 .

[58]  Orlando,et al.  Observation of Negative Ion Resonances in Amorphous Ice via Low-Energy (5-40 eV) Electron-Stimulated Production of Molecular Hydrogen. , 1996, Physical review letters.

[59]  W. H. Weinberg,et al.  Interaction of gas‐phase atomic deuterium with the Ru(001)–p(1×2)–O surface: Kinetics of hydroxyl and water formation , 1996 .

[60]  R. Dobrozemsky Reduction of water adsorption on technical surfaces in the atmosphere , 1995 .

[61]  I. J. Malik,et al.  The early stages of ruthenium oxidation , 1995 .

[62]  G. Held,et al.  Isotope effects in structure and kinetics of water adsorbates on Ru(001) , 1995 .

[63]  G. Held,et al.  The structure of the p(√3 × √3)R30° bilayer of D2O on Ru(001) , 1994 .

[64]  W. H. Weinberg,et al.  Observation of the reaction of gas‐phase atomic hydrogen with Ru(001)‐p(1×2)‐O at 100 K , 1994 .

[65]  D. P. Woodruff,et al.  Modern techniques of surface science , 1986 .

[66]  M. Meinke,et al.  Electron-stimulated desorption of anions from condensed CF4 , 1993 .

[67]  Igor J. Malik,et al.  Very high atomic oxygen coverages on Ru(001) , 1992 .

[68]  J. Jay-Gerin,et al.  Excess Electrons in Dielectric Media , 1991 .

[69]  P. Thiel,et al.  Adsorption of water on Ru(100) , 1989 .

[70]  Patricia A. Thiel,et al.  The interaction of water with solid surfaces: Fundamental aspects , 1987 .

[71]  J. Hrbek Weakly bound hydrogen on oxygen modified Ru(001) surface , 1986 .

[72]  Richard L. Kurtz,et al.  Angular distributions of ions desorbing from TiO2 , 1986 .

[73]  R. Anderson,et al.  The Fischer-Tropsch Synthesis , 1984 .

[74]  W. H. Weinberg,et al.  End-On and Side-On Bonding of Ketones to Surfaces: Acetone on the Ru(001) and Pt(111) Surfaces , 1983 .

[75]  T. Madey,et al.  The adsorption of water on clean and oxygen-dosed Ru(011) , 1982 .

[76]  W. H. Weinberg,et al.  Coadsorption of Oxygen and Water on Ru (001): Vibrational and Structural Properties , 1982 .

[77]  Peter J. Feibelman,et al.  Stability of ionically bonded surfaces in ionizing environments , 1979 .

[78]  L. Danielson,et al.  Effects of an electron beam on adsorption and desorption of ammonia on ruthenium (0001) , 1978 .

[79]  L. Sanche,et al.  Cross Sections for Low-Energy (1–100 eV) Electron Elastic and Inelastic Scattering in Amorphous Ice , 2003, Radiation research.

[80]  Regina Soufli,et al.  Controlling contamination in Mo/Si multilayer mirrors by Si surface capping modifications , 2002, SPIE Advanced Lithography.

[81]  T. Madey History of desorption induced by electronic transitions , 1994 .

[82]  X.-L. Zhou,et al.  Photochemistry at adsorbate/metal interfaces , 1991 .

[83]  R. Gasser,et al.  An Introduction to Chemisorption and Catalysis by Metals , 1987 .

[84]  L. Christophorou,et al.  in Electron - Molecule Interactions and their Applications , 1984 .

[85]  J. Yates,et al.  Interactions between Chemisorbed Species: H2 and CO on (100) Tungsten , 1971 .