An Intrinsic Approach to Multivariate Spline Interpolation at Arbitrary Points
暂无分享,去创建一个
[1] J. Deny,et al. Les espaces du type de Beppo Levi , 1954 .
[2] J. Lions,et al. Sur la complétion par rapport à une intégrale de Dirichlet , 1956 .
[3] M. Agranovich. PARTIAL DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS , 1961 .
[4] M. Newman,et al. Interpolation and approximation , 1965 .
[5] J. L. Walsh,et al. The theory of splines and their applications , 1969 .
[6] M. Atteia. Fonctions «spline» et noyaux reproduisants d'Aronszajn-Bergman , 1970 .
[7] J. C. Eilbeck. Table errata: Higher transcendental functions. Vol. I, II (McGraw-Hill, New York, 1953) by A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi , 1971 .
[8] Harold S. Shapiro,et al. Topics in Approximation Theory , 1971 .
[9] R. N. Desmarais,et al. Interpolation using surface splines. , 1972 .
[10] K. K. Vo,et al. Distributions, analyse de Fourier, opérateurs aux dérivées partielles , 1972 .
[11] T. J. Rivlin. The Chebyshev polynomials , 1974 .
[12] Jean Duchon,et al. Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .
[13] Jean Duchon,et al. Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.
[14] J. Meinguet. Multivariate interpolation at arbitrary points made simple , 1979 .