Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals.

We demonstrate optical metamaterial design using colloidal gold nanocrystal building blocks. In the solid state, chemically exchanging the nanocrystals' surface-capping molecules provides a tailorable dielectric-to-metal transition exhibiting a 10(10) range in DC conductivity and dielectric permittivity ranging from everywhere positive to everywhere negative throughout the visible-to-near-IR. Direct, wide-area nanoimprinting of subwavelength superstructures at room temperature, on plastic and glass substrates, affords plasmonic resonances ranging from 660 to 1070 nm, in agreement with numerical simulations.

[1]  Steven R. J. Brueck,et al.  Optical and Interferometric Lithography - Nanotechnology Enablers , 2005, Proceedings of the IEEE.

[2]  Michel Bosman,et al.  Nanoplasmonics: classical down to the nanometer scale. , 2012, Nano letters.

[3]  I. Park,et al.  Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. , 2007, Nano letters.

[4]  Al-Amin Dhirani,et al.  Charge transport in nanoparticle assemblies. , 2008, Chemical reviews.

[5]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[6]  A Paul Alivisatos,et al.  Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. , 2012, Journal of the American Chemical Society.

[7]  B. Statt,et al.  Metal to insulator transition in films of molecularly linked gold nanoparticles. , 2006, Physical review letters.

[8]  J. M. Kikkawa,et al.  Collective dipolar interactions in self-assembled magnetic binary nanocrystal superlattice membranes. , 2010, Nano letters.

[9]  Lechner,et al.  Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance , 2000, Physical review letters.

[10]  Harald Giessen,et al.  Metallic photonic crystals based on solution-processible gold nanoparticles. , 2006, Nano letters.

[11]  Cherie R. Kagan,et al.  Thiocyanate-capped nanocrystal colloids: vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids. , 2011, Journal of the American Chemical Society.

[12]  S. L. Teo,et al.  High aspect subdiffraction-limit photolithography via a silver superlens. , 2012, Nano letters.

[13]  A Paul Alivisatos,et al.  Transition from isolated to collective modes in plasmonic oligomers. , 2010, Nano letters.

[14]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[15]  R. P. Andres,et al.  Self-Assembly of a Two-Dimensional Superlattice of Molecularly Linked Metal Clusters , 1996, Science.

[16]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[17]  G. Wiederrecht,et al.  Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. , 2011, Nature nanotechnology.

[18]  Andrea Alù,et al.  Experimental realization of optical lumped nanocircuits at infrared wavelengths. , 2012, Nature materials.

[19]  Hongjun Gao,et al.  Monodisperse Noble-Metal Nanoparticles and Their Surface Enhanced Raman Scattering Properties , 2008 .

[20]  S. Gwo,et al.  Bottom-up assembly of colloidal gold and silver nanostructures for designable plasmonic structures and metamaterials. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[21]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[22]  A. Kildishev,et al.  Titanium nitride as a plasmonic material for visible and near-infrared wavelengths , 2012 .

[23]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[24]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[25]  Harald Giessen,et al.  Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates. , 2012, ACS nano.

[26]  Tsung-Chieh Cheng,et al.  Plasmonic metallic nanostructures by direct nanoimprinting of gold nanoparticles. , 2011, Optics express.

[27]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  M. Galli,et al.  Spectroscopic evaluation of surface functionalization efficiency in the preparation of mercaptopropyltrimethoxysilane self-assembled monolayers on glass. , 2009, Journal of colloid and interface science.

[29]  Nader Engheta,et al.  Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. , 2006, Physical review letters.

[30]  Liberato Manna,et al.  Understanding the Plasmon Resonance in Ensembles of Degenerately Doped Semiconductor Nanocrystals , 2012 .

[31]  J. Greffet,et al.  Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells , 2010 .

[32]  Richard J. Saykally,et al.  Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition , 1997 .

[33]  L. Guo,et al.  Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. , 2009, ACS nano.

[34]  Optical Properties of Gold Nanoparticles on Heavily-Doped Si Substrate Synthesized with an Electrochemical Process , 2011 .

[35]  Jan Herrmann,et al.  Percolation model for electron conduction in films of metal nanoparticles linked by organic molecules , 2002 .

[36]  V. Shalaev,et al.  Fabrication of optical negative-index metamaterials: Recent advances and outlook , 2008 .

[37]  Jennifer A Dionne,et al.  Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials. , 2012, Optics express.

[38]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[39]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[40]  Richard W Ziolkowski,et al.  Propagation in and scattering from a matched metamaterial having a zero index of refraction. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  George C Schatz,et al.  Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. , 2004, The Journal of chemical physics.

[42]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[43]  O. Hunderi,et al.  Effective medium models for the optical properties of inhomogeneous materials. , 1981, Applied optics.

[44]  Christopher J. Kiely,et al.  Some recent advances in nanostructure preparation from gold and silver particles: a short topical review , 2002 .

[45]  Dmitri V Talapin,et al.  Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS3(2-), OH-, and NH2- as surface ligands. , 2011, Journal of the American Chemical Society.

[46]  Teri W Odom,et al.  Multiscale patterning of plasmonic metamaterials. , 2007, Nature nanotechnology.

[47]  Vicki L. Colvin,et al.  X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface , 1994 .

[48]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[49]  Collective Coulomb blockade in an array of quantum dots: A Mott-Hubbard approach. , 1993, Physical review letters.

[50]  O. Lev,et al.  Studies on Charge Transport in Self-Assembled Gold−Dithiol Films: Conductivity, Photoconductivity, and Photoelectrochemical Measurements , 2001 .