Surface modification of sol–gel synthesized TiO2 nanoparticles induced by La-doping

[1]  Z. Dohcevic-Mitrovic,et al.  Improved efficiency of sol-gel synthesized mesoporous anatase nanopowders in photocatalytic degradation of metoprolol , 2013 .

[2]  C. Vágvölgyi,et al.  Degradation of thiamethoxam and metoprolol by UV, O3 and UV/O3 hybrid processes: Kinetics, degradation intermediates and toxicity , 2012 .

[3]  X. Cheng,et al.  Synergistic effects in La/N codoped TiO2 anatase (101) surface correlated with enhanced visible-light photocatalytic activity. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[4]  Zhong-liang Shi,et al.  Preparation, Characterization and Photocatalytic Activity of Lanthanum Doped Mesoporous Titanium Dioxide , 2012 .

[5]  Z. Dohcevic-Mitrovic,et al.  Photocatalytic degradation of metoprolol in water suspension of TiO2 nanopowders prepared using sol–gel route , 2012, Journal of Sol-Gel Science and Technology.

[6]  F. Yu,et al.  Structure and Properties of La2O3-TiO2 Nanocomposite Films for Biomedical Applications , 2011, Bioinorganic chemistry and applications.

[7]  W. Daoud,et al.  Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping , 2011 .

[8]  Shurong Wang,et al.  The Preparation and Characterization of La Doped TiO2 Nanotubes and Their Photocatalytic Activity , 2010 .

[9]  Hongzhi Wang,et al.  Synthesis and characterization of La2O3/TiO2-xFx and the visible light photocatalytic oxidation of 4-chlorophenol. , 2010, Journal of hazardous materials.

[10]  M. Ferrara,et al.  Hydrophilic and optical properties of nanostructured titania prepared by sol–gel dip coating , 2010 .

[11]  Eric R. Waclawik,et al.  An efficient photocatalyst structure: TiO(2)(B) nanofibers with a shell of anatase nanocrystals. , 2009, Journal of the American Chemical Society.

[12]  Z. Dohcevic-Mitrovic,et al.  Optical Characterization of Laser-Synthesized Anatase TiO_{2} Nanopowders by Spectroscopic Ellipsometry and Photoluminescence Measurements , 2009 .

[13]  G. Bertrand,et al.  On the origin of the decay of the photocatalytic activity of TiO2 powders ground at high-energy , 2009 .

[14]  Sean C. Smith,et al.  Efficient Promotion of Anatase TiO2 Photocatalysis via Bifunctional Surface-Terminating Ti−O−B−N Structures , 2009 .

[15]  Z. Dohcevic-Mitrovic,et al.  Characterization of La-Doped TiO2Nanopowders by Raman Spectroscopy , 2009 .

[16]  Z. Dohcevic-Mitrovic,et al.  Raman study of the variation in anatase structure of TiO2 nanopowders due to the changes of sol–gel synthesis conditions , 2009 .

[17]  K. Parida,et al.  Visible light induced photocatalytic activity of rare earth titania nanocomposites , 2008 .

[18]  Zongyan Zhao,et al.  Effects of lanthanide doping on electronic structures and optical properties of anatase TiO2 from density functional theory calculations , 2008 .

[19]  M. Katoh,et al.  Adsorption properties and photocatalytic activity of TiO2 and La-doped TiO2 , 2008 .

[20]  I. Sobrados,et al.  FTIR and NMR study of the adsorbed water on nanocrystalline anatase , 2007 .

[21]  M. León,et al.  Dielectric functions and fundamental band gaps of Cu2In4Se7, CuGa3Se5 and CuGa5Se8 crystals , 2007 .

[22]  T. Lee,et al.  Photoluminescence of La/Ti mixed oxides prepared using sol–gel process and their pCBA photodecomposition , 2007 .

[23]  Shicheng Zhang,et al.  Heterogeneous photocatalytic decomposition of benzene on lanthanum-doped TiO2 film at ambient temperature. , 2006, Chemosphere.

[24]  M. Gamal El-Din,et al.  Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review , 2006 .

[25]  Jimei Zhang,et al.  Photocatalytic activity enhancing for TiO2 photocatalyst by doping with La , 2006 .

[26]  Z. Dohcevic-Mitrovic,et al.  Effects of Confinement, Strain and Nonstoichiometry on Raman Spectra of Anatase TiO2 Nanopowders , 2006 .

[27]  M. Anderson,et al.  Photoreactive anatase consolidation characterized by FTIR spectroscopy , 2005 .

[28]  M. León,et al.  Optical properties and electronic structure of polycrystalline Ag1−xCuxInSe2 alloys , 2005 .

[29]  Sun Xiaojun,et al.  THE PREPARATION AND CHARACTERIZATION OF LA DOPED TIO2 NANOPARTICLES AND THEIR PHOTOCATALYTIC ACTIVITY , 2004 .

[30]  Enrique Iglesia,et al.  The effects of diffusion mechanism and void structure on transport rates and tortuosity factors in complex porous structures , 2004 .

[31]  R. Amal,et al.  Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis , 2004 .

[32]  G. Androutsopoulos,et al.  A New Model for Capillary Condensation−Evaporation Hysteresis Based on a Random Corrugated Pore Structure Concept: Prediction of Intrinsic Pore Size Distributions. 1. Model Formulation , 2000 .

[33]  H. Kanoh,et al.  Characterization of porous carbons with high resolution αs-analysis and low temperature magnetic susceptibility , 1998 .

[34]  M. Cardona,et al.  Interband critical points of GaAs and their temperature dependence. , 1987, Physical review. B, Condensed matter.

[35]  Fujio Izumi,et al.  Raman spectrum of anatase, TiO2 , 1978 .

[36]  E. Barrett,et al.  The Determination of Pore Volume and Area Distributions in Porous Substances. II. Comparison between Nitrogen Isotherm and Mercury Porosimeter Methods , 1951 .

[37]  H. Fan,et al.  Microstructure and dielectric properties of La2O3 films prepared by ion beam assistant electron-beam evaporation , 2009 .

[38]  Constantinos E. Salmas,et al.  A novel pore structure tortuosity concept based on nitrogen sorption hysteresis data , 2001 .

[39]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .