Geosimulation of urban growth and demographic decline in the Ruhr: a case study for 2025 using the artificial intelligence of cells and agents

AbstractThe Ruhr is an “old acquaintance” in the discourse of urban decline in old industrialized cities. The agglomeration has to struggle with archetypical problems of former monofunctional manufacturing cities. Surprisingly, the image of a shrinking city has to be refuted if you shift the focus from socioeconomic wealth to its morphological extension. Thus, it is the objective of this study to meet the challenge of modeling urban sprawl and demographic decline by combining two artificial intelligent solutions: The popular urban cellular automaton SLEUTH simulates urban growth using four simple but effective growth rules. In order to improve its performance, SLEUTH has been modified among others by combining it with a robust probability map based on support vector machines. Additionally, a complex multi-agent system is developed to simulate residential mobility in a shrinking city agglomeration: residential mobility and the housing market of shrinking city systems focuses on the dynamic of interregional housing markets implying the development of potential dwelling areas. The multi-agent system comprises the simulation of population patterns, housing prices, and housing demand in shrinking city agglomerations. Both models are calibrated and validated regarding their localization and quantification performance. Subsequently, the urban landscape configuration and composition of the Ruhr 2025 are simulated. A simple spatial join is used to combine the results serving as valuable inputs for future regional planning in the context of multifarious demographic change and preceding urban growth.

[1]  R. J. Solomonoff The search for artificial intelligence , 1968 .

[2]  M. Antrop Landscape change and the urbanization process in Europe , 2004 .

[3]  P. Stern,et al.  People and pixels : linking remote sensing and social science , 1999 .

[4]  Der Einfluss von Preisänderungen auf Angebot und Nachfrage von Immobilien: Theorie, empirische Evidenz und Implikationen , 2007 .

[5]  Eric Koomen,et al.  Land-use modelling in planning practice , 2011 .

[6]  Dagmar Haase,et al.  Modeling and simulating residential mobility in a shrinking city using an agent-based approach , 2010, Environ. Model. Softw..

[7]  Steven L. Lytinen,et al.  Agent-based Simulation Platforms: Review and Development Recommendations , 2006, Simul..

[8]  Keith C. Clarke,et al.  A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area , 1997 .

[9]  D. Unwin Geographical information systems and the problem of 'error and uncertainty' , 1995 .

[10]  W. Parton,et al.  Land use change: complexity and comparisons , 2008, Journal of land use science.

[11]  A. Yeh,et al.  Changing Spatial Distribution and Determinants of Land Development in Chinese Cities in the Transition from a Centrally Planned Economy to a Socialist Market Economy: A Case Study of Guangzhou , 1997 .

[12]  Michael Batty,et al.  Possible Urban Automata , 1997 .

[13]  Advances in Urban Remote Sensing: Examples From Berlin (Germany) , 2007 .

[14]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[15]  Ashton Shortridge,et al.  Complex systems models and the management of error and uncertainty , 2008 .

[16]  Hans Jochen Scholl,et al.  Agent-based and system dynamics modeling: a call for cross study and joint research , 2001, Proceedings of the 34th Annual Hawaii International Conference on System Sciences.

[17]  Hong S. He,et al.  Performance Evaluation of the SLEUTH Model in the Shenyang Metropolitan Area of Northeastern China , 2009 .

[18]  Michael Batty,et al.  Cities and Complexity: Understanding Cities Through Cellular Automata, Agent-Based Models and Fractals , 2005 .

[19]  M. Langford,et al.  Generating and mapping population density surfaces within a geographical information system. , 1994, The Cartographic journal.

[20]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[21]  Tanja Tötzer,et al.  Modeling growth and densification processes in sub-urban regions – simulation of landscape transition with spatial agents , 2005 .

[22]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[23]  R. Pontius,et al.  Modeling Land-Use and Land-Cover Change , 2006 .

[24]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[25]  Icek Ajzen,et al.  From Intentions to Actions: A Theory of Planned Behavior , 1985 .

[26]  Jon Atli Benediktsson,et al.  Sensitivity of Support Vector Machines to Random Feature Selection in Classification of Hyperspectral Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Klein Goldewijk Cgm,et al.  The MAP COMPARISON KIT: methods, software and applications , 2004 .

[28]  Douglass B. Lee,et al.  Requiem for large-scale models , 1973, SIML.

[29]  K. Clarke,et al.  The SLEUTH Land Use Change Model: A Review , 2013 .

[30]  Paul Waddell,et al.  An integrated urban development and ecological simulation model , 2000 .

[31]  Andreas Rienow,et al.  Supporting SLEUTH - Enhancing a cellular automaton with support vector machines for urban growth modeling , 2015, Comput. Environ. Urban Syst..

[32]  A. S. Mahiny,et al.  Simulating urban growth in Mashad City, Iran through the SLEUTH model (UGM) , 2009 .

[33]  Patrick Hostert,et al.  Uncovering land-use dynamics driven by human decision-making - A combined model approach using cellular automata and system dynamics , 2012, Environ. Model. Softw..

[34]  M. Ebert,et al.  5. Konferenz „Analysen und Politik für Ostdeutschland – aus der Forschung des IWH“ – ein Bericht , 2012 .

[35]  Keith C. Clarke,et al.  The Limits of Simplicity: Toward Geocomputational Honesty in Urban Modeling , 2003 .

[36]  Peter H. Rossi,et al.  Why Families Move , 1956 .

[37]  Keith C. Clarke,et al.  Toward Optimal Calibration of the SLEUTH Land Use Change Model , 2007, Trans. GIS.

[38]  Edward J. Rykiel,et al.  Testing ecological models: the meaning of validation , 1996 .

[39]  C. Quaiser-Pohl,et al.  Akteure der Gentrification und ihre Ortsbindung: , 2008 .

[40]  M. Janssen,et al.  Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review , 2003 .

[41]  Philip W. Anderson,et al.  More Is Different Broken symmetry and the nature of the hierarchical structure of science , 1972 .

[42]  M. Wegener From Macro to Micro—How Much Micro is too Much? , 2011 .

[43]  J. Schmithals,et al.  Motive für die Wanderung von West- nach Ostdeutschland und Rückkehrtypen , 2009 .

[44]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[45]  Xia Li,et al.  Cellular automata for simulating land use changes based on support vector machines , 2008, Comput. Geosci..

[46]  Maggi Kelly,et al.  Support vector machines for predicting distribution of Sudden Oak Death in California , 2005 .

[47]  F. Kroll,et al.  Does demographic change affect land use patterns?: A case study from Germany , 2010 .

[48]  Peter H. Verburg,et al.  Statistical methods for analysing the spatial dimension of changes in land use and farming systems , 2005 .

[49]  Stefan Siedentop,et al.  Urban Sprawl—verstehen, messen, steuern , 2005 .

[50]  Ton C M de Nijs,et al.  Determinants of Land-Use Change Patterns in the Netherlands , 2004 .

[51]  R. Gil Pontius,et al.  Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA , 2001 .

[52]  Michael J. North,et al.  Tutorial on agent-based modelling and simulation , 2005, Proceedings of the Winter Simulation Conference, 2005..

[53]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[54]  Eric Koomen,et al.  Comparing the input, output, and validation maps for several models of land change , 2008 .

[55]  Arnold K. Bregt,et al.  A method to define a typology for agent-based analysis in regional land-use research , 2008 .

[56]  Fernando De la Torre,et al.  Optimal feature selection for support vector machines , 2010, Pattern Recognit..

[57]  R. Pontius QUANTIFICATION ERROR VERSUS LOCATION ERROR IN COMPARISON OF CATEGORICAL MAPS , 2000 .

[58]  S. Barr,et al.  Inferring Urban Land Use by Spatial and Structural Pattern Recognition , 2001 .

[59]  Henning Nuissl,et al.  Decline and sprawl: an evolving type of urban development – observed in Liverpool and Leipzig1 , 2005 .

[60]  P. Torrens,et al.  Geosimulation: Automata-based modeling of urban phenomena , 2004 .

[61]  Manuel Ruiz,et al.  Comparison of thematic maps using symbolic entropy , 2012, Int. J. Geogr. Inf. Sci..

[62]  J. Eekhoff,et al.  Zur Finanzmarktkrise: Die Rolle der Immobilienbewertung , 2010 .

[63]  H. Briassoulis Analysis of Land Use Change: Theoretical and Modeling Approaches , 2000 .

[64]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[65]  Harris Drucker,et al.  Support vector machines for spam categorization , 1999, IEEE Trans. Neural Networks.

[66]  T. Schneider,et al.  Berlin (Germany) Urban and Environmental Information System: Application of Remote Sensing for Planning and Governance — Potentials and Problems , 2007 .

[67]  P. Anderson More is different. , 1972, Science.

[68]  PETER H. VERBURG,et al.  Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model , 2002, Environmental management.

[69]  Paul Schot,et al.  Land use change modelling: current practice and research priorities , 2004 .

[70]  Alexander Siegmund,et al.  Monitoring statewide urban development using multitemporal multisensoral satellite data covering a 40-year time span in north Rhine-Westphalia (Germany) , 2004, SPIE Remote Sensing.

[71]  Kay W. Axhausen,et al.  Implementierung des integrierten Flächennutzungsmodells UrbanSim für den Grossraum Zürich , 2007 .

[72]  Torsten Hägerstrand,et al.  The Computer and the Geographer , 1967 .

[73]  F. Kalter Wohnortwechsel in Deutschland , 1997 .

[74]  Elisabete A. Silva,et al.  Complexity, emergence and cellular urban models: lessons learned from applying SLEUTH to two Portuguese metropolitan areas , 2005 .

[75]  Dale S. Rothman,et al.  Searching for the future of land: scenarios from the local to global scale , 2006 .

[76]  Eric F. Lambin,et al.  Introduction: Local Processes with Global Impacts , 2006 .

[77]  Elisabete A. Silva,et al.  Artificial Intelligence Solutions for Urban Land Dynamics: A Review , 2010 .

[78]  K. Seto,et al.  Modeling Land Use and Land Cover Change , 2012 .

[79]  Richard Tay,et al.  Support vector machines for urban growth modeling , 2010, GeoInformatica.

[80]  Robert Gilmore Pontius,et al.  Useful techniques of validation for spatially explicit land-change models , 2004 .

[81]  Michael Batty,et al.  Cities and complexity - understanding cities with cellular automata, agent-based models, and fractals , 2007 .

[82]  Elisabete A. Silva,et al.  Surveying Models in Urban Land Studies , 2012 .

[83]  Dagmar Haase,et al.  Actors and factors in land-use simulation: The challenge of urban shrinkage , 2012, Environ. Model. Softw..

[84]  Jungho Im,et al.  Support vector machines in remote sensing: A review , 2011 .

[85]  Roger White,et al.  Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns , 1993 .