Abelian p-groups and the Halting problem

Abstract We investigate which effectively presented abelian p-groups are isomorphic relative to the halting problem. The standard approach to this and similar questions uses the notion of Δ 2 0 -categoricity (to be defined). We partially reduce the description of Δ 2 0 -categorical p-groups of Ulm type 1 to the analogous problem for equivalence structures. Using this reduction, we solve a problem left open in [5] . For the sake of the reduction mentioned above, we introduce a new notion of effective Δ 2 0 -categoricity that lies strictly in-between plain Δ 2 0 -categoricity and relative Δ 2 0 -categoricity (to be defined). We then reduce the problem of classifying effective Δ 2 0 -categoricity to a question stated in terms of Σ 2 0 -sets. Among other results, we show that for c.e. Turing degrees bounding such sets is equal to being complete.

[1]  Ewan J. Barker Back and Forth Relations for Reduced Abelian p-Groups , 1995, Ann. Pure Appl. Log..

[2]  C. Ash,et al.  Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees , 1986 .

[3]  N. G. Khisamiev,et al.  Chapter 17 Constructive abelian groups , 1998 .

[4]  Douglas A. Cenzer,et al.  Effective categoricity of equivalence structures , 2006, Ann. Pure Appl. Log..

[5]  Denis R. Hirschfeldt,et al.  Degree Spectra of Relations on Computable Structures , 2000, Bulletin of Symbolic Logic.

[6]  Richard Lawrence Smith,et al.  Two theorems on autostability in p-Groups , 1981 .

[7]  M. Rabin Computable algebra, general theory and theory of computable fields. , 1960 .

[8]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[9]  N. S. Romanovskii,et al.  Nilpotent groups of finite algorithmic dimension , 1989 .

[10]  N. G. Khisamiev,et al.  Effectively totally decomposable abelian groups , 1997 .

[11]  Rodney G. Downey,et al.  Iterated effective embeddings of abelian p-groups , 2014, Int. J. Algebra Comput..

[12]  Rodney G. Downey,et al.  Effectively categorical abelian groups , 2013 .

[13]  S. Goncharov Countable Boolean Algebras and Decidability , 1997 .

[14]  Charles F. D. McCoy Delta20 - categoricity in Boolean algebras and linear orderings , 2003, Ann. Pure Appl. Log..

[15]  A. I. Mal'tsev CONSTRUCTIVE ALGEBRAS I , 1961 .

[16]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[17]  N. G. Khisamiev A Class of Strongly Decomposable Abelian Groups , 2002 .

[18]  Johanna N. Y. Franklin,et al.  Degrees of Categoricity and the Hyperarithmetic Hierarchy , 2013, Notre Dame J. Formal Log..

[19]  B. L. Waerden Eine Bemerkung über die Unzerlegbarkeit von Polynomen , 1930 .

[20]  Rodney G. Downey,et al.  On -categoricity of equivalence relations , 2015, Ann. Pure Appl. Log..

[21]  Rodney G. Downey,et al.  Computable completely decomposable groups , 2014 .

[22]  G. Higman Subgroups of finitely presented groups , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  S. S. Goncharov,et al.  Autostability of models and Abelian groups , 1980 .

[24]  Douglas A. Cenzer,et al.  Effective categoricity of Abelian p-groups , 2009, Ann. Pure Appl. Log..

[25]  J. Shepherdson,et al.  Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.