Multi-type display calculus for dynamic epistemic logic

In the present paper, we introduce a multi-type display calculus for dynamic epistemic logic, which we refer to as Dynamic Calculus. The displayapproach is suitable to modularly chart the space of dynamic epistemic logics on weaker-than-classical propositional base. The presence of types endows the language of the Dynamic Calculus with additional expressivity, allows for a smooth proof-theoretic treatment, and paves the way towards a general methodology for the design of proof systems for the generality of dynamic logics, and certainly beyond dynamic epistemic logic. We prove that the Dynamic Calculus adequately captures Baltag-Moss-Solecki’s dynamic epistemic logic, and enjoys Belnap-style cut elimination.

[1]  Alessandra Palmigiano,et al.  Algebraic Semantics and Model Completeness for Intuitionistic Public Announcement Logic , 2011, LORI.

[2]  Rajeev Goré,et al.  From Display Calculi to Deep Nested Sequent Calculi: Formalised for Full Intuitionistic Linear Logic , 2014, IFIP TCS.

[3]  Jan A. Plaza,et al.  Logics of public communications , 2007, Synthese.

[4]  Alessandra Palmigiano,et al.  Multi-type display calculus for propositional dynamic logic , 2016, J. Log. Comput..

[5]  B. Davey,et al.  Introduction to Lattices and Order: Appendix B: further reading , 2002 .

[6]  Carsten Lutz,et al.  Complexity and succinctness of public announcement logic , 2006, AAMAS '06.

[7]  Angus Macintyre,et al.  Trends in Logic , 2001 .

[8]  Alessandra Palmigiano,et al.  Epistemic Updates on Algebras , 2013, Log. Methods Comput. Sci..

[9]  Heinrich Wansing,et al.  Sequent Systems for Modal Logics , 2002 .

[10]  Roy Dyckhoff,et al.  Algebra, proof theory and applications for an intuitionistic logic of propositions, actions and adjoint modal operators , 2013, TOCL.

[11]  Greg Restall,et al.  An Introduction to Substructural Logics , 2000 .

[12]  Willem Conradie,et al.  Algebraic modal correspondence: Sahlqvist and beyond , 2016, J. Log. Algebraic Methods Program..

[13]  Rajeev Goré,et al.  Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic , 2013, CSL 2013.

[14]  Alessandra Palmigiano,et al.  A proof-theoretic semantic analysis of dynamic epistemic logic , 2016, J. Log. Comput..

[15]  Lawrence S. Moss,et al.  The Logic of Public Announcements and Common Knowledge and Private Suspicions , 1998, TARK.

[16]  Rohit Parikh,et al.  Game Logic - An Overview , 2003, Stud Logica.

[17]  Nuel Belnap,et al.  Linear Logic Displayed , 1989, Notre Dame J. Formal Log..

[18]  Mehrnoosh Sadrzadeh,et al.  Epistemic Actions as Resources , 2007, J. Log. Comput..

[19]  Vaughan R. Pratt,et al.  Action Logic and Pure Induction , 1990, JELIA.

[20]  Alessandra Palmigiano,et al.  Dynamic Epistemic Logic Displayed , 2013, LORI.

[21]  Willem Conradie,et al.  Algorithmic correspondence and canonicity for distributive modal logic , 2012, Ann. Pure Appl. Log..

[22]  Barteld Kooi,et al.  Dynamic Epistemic Logic , 2013 .

[23]  Francesca Poggiolesi,et al.  Gentzen Calculi for Modal Propositional Logic , 2010 .

[24]  H. Wansing Displaying Modal Logic , 1998 .

[25]  Rajeev Goré,et al.  Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic - Extended Version , 2013, CSL.

[26]  Nicole Fassbinder Automated Reasoning with Analytic Tableaux and Related Methods , 1997, Lecture Notes in Computer Science.

[27]  Willem Conradie,et al.  Unified Correspondence , 2014, Johan van Benthem on Logic and Information Dynamics.

[28]  Rajeev Goré,et al.  Dual Intuitionistic Logic Revisited , 2000, TABLEAUX.