Mitigation of the Surface Oxidation of Titanium by Hydrogen

As a reactive metal, Ti is prone to surface oxidation spontaneously when exposed to environment containing oxygen—a phenomenon also known as surface passivation. It has also been known that titaniu...

[1]  K. Chandran,et al.  Powder metallurgy of titanium – past, present, and future , 2018 .

[2]  M. Free,et al.  A Perspective on Thermochemical and Electrochemical Processes for Titanium Metal Production , 2017 .

[3]  M. Free,et al.  Hydrogen assisted magnesiothermic reduction of TiO2 , 2017 .

[4]  M. Bram,et al.  Surface chemical state of Ti powders and its alloys: Effect of storage conditions and alloy composition , 2016 .

[5]  Z. Fang,et al.  Thermodynamic Destabilization of Ti-O Solid Solution by H2 and Deoxygenation of Ti Using Mg. , 2016, Journal of the American Chemical Society.

[6]  Andrew M. Minor,et al.  Origin of dramatic oxygen solute strengthening effect in titanium , 2015, Science.

[7]  A. Volinsky,et al.  Water molecules effect on pure Ti passive film structure in methanol solution , 2014 .

[8]  O. Bondarchuk,et al.  Role of Surface Contamination in Titanium PM , 2012 .

[9]  M. Xue,et al.  Corrosion behavior of superhydrophobic surfaces of Ti alloys in NaCl solutions , 2012 .

[10]  M. Jenko,et al.  Surface characterization of titanium hydride powder , 2012 .

[11]  Rui Vilar,et al.  Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy , 2011 .

[12]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[13]  Yizhong Huang,et al.  Characterisation of titanium oxide film grown in 0.9% NaCl at different sweep rates , 2005 .

[14]  B. Popov,et al.  Anodic Behavior of Ti in KOH Solutions Ellipsometric and Micro-Raman Spectroscopy Studies , 2002 .

[15]  Aleksander Jablonski,et al.  The electron attenuation length revisited , 2002 .

[16]  D. Miller,et al.  Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination? , 2002 .

[17]  B. Popov,et al.  Ellipsometric and Raman Spectroscopic Study of Thermally Formed Films on Titanium , 1997 .

[18]  D. Devilliers,et al.  Structure and composition of passive titanium oxide films , 1997 .

[19]  J. Pan,et al.  Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application , 1996 .

[20]  R. Mclellan,et al.  Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium , 1996 .

[21]  T. Shibata,et al.  The effect of film formation conditions on the structure and composition of anodic oxide films on titanium , 1995 .

[22]  R. Bell,et al.  Composition and structure of the anodic films on titanium in aqueous solutions , 1993 .

[23]  J. Delplancke,et al.  Galvanostatic anodization of titanium—II. Reactions efficiencies and electrochemical behaviour model , 1988 .

[24]  A. San-Martin,et al.  The H−Ti (Hydrogen-Titanium) system , 1987 .

[25]  U. Stimming,et al.  Photoelectrochemical Investigations of Passive Films on Titanium Electrodes , 1986 .

[26]  S. Pollack,et al.  Titanium Release from Implants: A Proposed Mechanism , 1979 .

[27]  Yuyuan Zhao,et al.  Advances in powder metallurgy , 2013 .

[28]  E. Gemelli,et al.  Oxidation kinetics of commercially pure titanium , 2007 .

[29]  R. Nishimura,et al.  Anodic oxidation and kinetics of titanium in 1 M chloride solutions , 1982 .