Marine Atmospheric Corrosion of Carbon Steel: A Review

The atmospheric corrosion of carbon steel is an extensive topic that has been studied over the years by many researchers. However, until relatively recently, surprisingly little attention has been paid to the action of marine chlorides. Corrosion in coastal regions is a particularly relevant issue due the latter’s great importance to human society. About half of the world’s population lives in coastal regions and the industrialisation of developing countries tends to concentrate production plants close to the sea. Until the start of the 21st century, research on the basic mechanisms of rust formation in Cl−-rich atmospheres was limited to just a small number of studies. However, in recent years, scientific understanding of marine atmospheric corrosion has advanced greatly, and in the authors’ opinion a sufficient body of knowledge has been built up in published scientific papers to warrant an up-to-date review of the current state-of-the-art and to assess what issues still need to be addressed. That is the purpose of the present review. After a preliminary section devoted to basic concepts on atmospheric corrosion, the marine atmosphere, and experimentation on marine atmospheric corrosion, the paper addresses key aspects such as the most significant corrosion products, the characteristics of the rust layers formed, and the mechanisms of steel corrosion in marine atmospheres. Special attention is then paid to important matters such as coastal-industrial atmospheres and long-term behaviour of carbon steel exposed to marine atmospheres. The work ends with a section dedicated to issues pending, noting a series of questions in relation with which greater research efforts would seem to be necessary.

[1]  H. Townsend,et al.  Atmospheric corrosion of different steels in marine, rural and industrial environments , 1999 .

[2]  Seifollah Nasrazadani,et al.  Morphology of rust phases formed on weathering steels in various laboratory corrosion tests , 1989 .

[3]  R. Kelly,et al.  Marine Aerosol Drop Size Effects on the Corrosion Behavior of Low Carbon Steel and High Purity Iron , 2014 .

[4]  N. D. Tomashov Theory of corrosion and protection of metals : the science of corrosion , 1966 .

[5]  U. R. Evans,et al.  Electrochemical Mechanism of Atmospheric Rusting , 1965, Nature.

[6]  I. Guillot,et al.  XAS and XRD in situ characterisation of reduction and reoxidation processes of iron corrosion products involved in atmospheric corrosion , 2014 .

[7]  K. Compton,et al.  Atmospheric Galvanic Couple Corrosion , 1955 .

[8]  Costas A. Varotsos,et al.  Effects of air pollution on materials and cultural heritage: ICP materials celebrates 25 years of research , 2012 .

[9]  P. Refait,et al.  Formation, fast oxidation and thermodynamic data of Fe(II) hydroxychlorides , 2008 .

[10]  Shengxi Li,et al.  In situ Raman Spectroscopic Study of NaCl Particle-Induced Marine Atmospheric Corrosion of Carbon Steel , 2012 .

[11]  M. Gustafsson,et al.  Dry deposition and concentration of marine aerosols in a coastal area, SW Sweden , 1996 .

[12]  Robert E. Melchers,et al.  A new interpretation of the corrosion loss processes for weathering steels in marine atmospheres , 2008 .

[13]  K. E. García,et al.  On the Rust Products Formed on Weathering and Carbon Steels Exposed to Chloride in Dry–Wet Cyclical Processes , 2005 .

[14]  M. Yamashita,et al.  Recent Progress in the Study of Protective Rust-Layer Formation on Weathering Steel , 1998 .

[15]  M. Morcillo,et al.  An attempt to classify the morphologies presented by different rust phases formed during the exposure of carbon steel to marine atmospheres , 2016 .

[16]  R. Ericsson,et al.  The influence of sodium chloride on the atmospheric corrosion of steel , 1978 .

[17]  J. Jiménez,et al.  Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterization , 2015 .

[18]  K. Kreislová,et al.  ISOCORRAG International Atmospheric Exposure Program: Summary of Results , 2010 .

[19]  Daniel de la Fuente,et al.  On the mechanism of rust exfoliation in marine environments , 2017 .

[20]  Takenori Nakayama,et al.  Influences of metal ions on the formation of β-FeOOH particles , 2001 .

[21]  E. Fasiska Structural aspects of the oxides and oxyhydrates of iron , 1967 .

[22]  Joh.‐E. Hiller,et al.  Phasenumwandlungen im Rost , 1966 .

[23]  Desmond C. Cook,et al.  Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments , 2005 .

[24]  Paul Keller,et al.  Vorkommen, Entstehung und Phasenumwandlung von β‐FeOOH in Rost , 1969 .

[25]  Ashutosh Kumar Singh,et al.  Mössbauer and x-ray diffraction phase analysis of rusts from atmospheric test sites with different environments in Sweden , 1985 .

[26]  Shengxi Li,et al.  Aerosol Salt Particle Deposition on Metals Exposed to Marine Environments: A Study Related to Marine Atmospheric Corrosion , 2014 .

[27]  K. J. Gallagher The Atomic Structure of Tubular Subcrystals of β-Iron(III) Oxide Hydroxide , 1970, Nature.

[28]  Iván Díaz,et al.  Rust exfoliation on carbon steels in chloride-rich atmospheres , 2015 .

[29]  H. Schwarz,et al.  Über die Wirkung des Magnetits beim atmosphärischen Rosten und beim Unterrosten von Anstrichen , 1972 .

[30]  J. F. Henriksen,et al.  The distribution of NaCl on Fe during atmospheric corrosion , 1969 .

[31]  J. Post,et al.  Crystal structure refinement of akaganéite , 1991 .

[32]  J. Jiménez,et al.  Corrosion mechanisms of mild steel in chloride‐rich atmospheres , 2016 .

[33]  G. Schikorr Korrosionsverhalten von Zink und Zinküberzügen an der Atmosphäre , 1964 .

[34]  A. H. Woodcock,et al.  THE PRODUCTION, CONCENTRATION, AND VERTICAL DISTRIBUTION OF THE SEA‐SALT AEROSOL * , 1980 .

[35]  M. Morcillo,et al.  Salinity in marine atmospheric corrosion: Its dependence on the wind regime existing in the site , 2000 .

[36]  E. Burger,et al.  Use of the gold markers method to predict the mechanisms of iron atmospheric corrosion , 2011 .

[37]  Daniel de la Fuente,et al.  Corrosión atmosférica marina de aceros al carbono , 2015 .

[38]  Takenori Nakayama,et al.  Assessment of rust layers formed on weathering steel in saline environment by gas adsorption , 2015 .

[39]  H. Godard,et al.  A Rapid Method for Determining the Corrosivity of the Atmosphere at any Location , 1963, Nature.

[40]  Kazuhiko Noda,et al.  Electrochemical Behavior of Rust Formed on Carbon Steel in a Wet/Dry Environment Containing Chloride Ions , 2000 .

[41]  Iván Díaz Ocaña Corrosión atmosférica de aceros patinables de nueva generación , 2012 .

[42]  Ludovic Legrand,et al.  A corrosion study of the ferrous medieval reinforcement of the Amiens cathedral. Phase characterisation and localisation by various microprobes techniques , 2010 .

[43]  Iván Díaz,et al.  Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel , 2015 .

[44]  I. J. Padaratz,et al.  Salinity of marine aerosols in a Brazilian coastal area : Influence of wind regime , 2007 .

[45]  Yoshiaki Shimizu,et al.  Effect of NaCl on Rusting of Steel in Wet and Dry Corrosion Cycle , 1995 .

[46]  R. Kelly,et al.  Wetting phenomena and time of wetness in atmospheric corrosion: a review , 2012 .

[47]  Dalva Lúcia Araújo de Faria,et al.  Characterization of corrosion products formed on steels in the first months of atmospheric exposure , 2003 .

[48]  Masataka Yamamoto,et al.  Suppression of deicing salt corrosion of weathering steel bridges by washing , 2005 .

[49]  J. W. Fitzgerald,et al.  Marine aerosols: A review , 1991 .

[50]  T. Ishikawa,et al.  Formation of magnetite rust particles by reacting iron powder with artificial α-, β- and γ-FeOOH in aqueous media , 2014 .

[51]  M. L. Berndt,et al.  Control de la Corrosión , 2005 .

[52]  K. Kandori,et al.  Influences of Metal Chlorides and Sulfates on the Formation of Beta-FeOOH Particles by Aerial Oxidation of FeCl2 Solutions , 2004 .

[53]  Yu. M. Panchenko,et al.  Long-term forecast of corrosion mass losses of technically important metals in various world regions using a power function , 2014 .

[54]  Iván Díaz,et al.  Atmospheric corrosion data of weathering steels. A review , 2013 .

[55]  K. Sing,et al.  Adsorption by Powders and Porous Solids: Principles, Methodology and Applications , 1998 .

[56]  G. Licheri,et al.  EXAFS and X-Ray Diffraction in Solutions , 1983 .

[57]  M. Morcillo,et al.  Effect of Distance from Sea on Atmospheric Corrosion Rate , 1999 .

[58]  Martin Stratmann,et al.  An electrochemical study of phase-transitions in rust layers , 1983 .

[59]  H. Saricimen,et al.  Initial stages of atmospheric corrosion of steel in the Arabian Gulf , 1991 .

[60]  K. Asami,et al.  In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years , 2003 .

[61]  Y. Waseda,et al.  Corrosion Mechanism of Iron from an X-ray Structural Viewpoint , 2006 .

[62]  Yu. M. Panchenko,et al.  Long-term prediction of metal corrosion losses in atmosphere using a power-linear function , 2016 .

[63]  G. C. Wood,et al.  The corrosion of iron and zinc by atmospheric hydrogen chloride , 1993 .

[64]  Gibson Meira,et al.  Vertical distribution of marine aerosol salinity in a Brazilian coastal area - The influence of wind speed and the impact on chloride accumulation into concrete , 2017 .

[65]  Akemi Yasukawa,et al.  Formation of magnetite in the presence of ferric oxyhydroxides , 1998 .

[66]  M. Benarie,et al.  A general corrosion function in terms of atmospheric pollutant concentrations and rain pH , 1986 .

[67]  M. Stratmann,et al.  AN ELECTROCHEMICAL STUDY OF PHASE TRANSITIONS IN RUST LAYERS , 1983 .

[68]  J C Scully,et al.  Fundamentals of corrosion , 1990 .

[69]  Y. Ujihira,et al.  Conversion Electron Mössbauer Spectrometric Study of Corrosion Products of Iron Immersed in Sodium Chloride Solution , 1988 .

[70]  U. R. Evans,et al.  MECHANISM OF ATMOSPHERIC RUSTING , 1972 .

[71]  P. Refait,et al.  The mechanisms of oxidation of ferrous hydroxychloride β-Fe2(OH)3Cl in aqueous solution: The formation of akaganeite vs goethite , 1997 .

[72]  Iván Díaz,et al.  Marine atmospheric corrosion of carbon steels , 2015 .

[73]  D. Paterson AN AUSTRALIA–WIDE MAP OF CORROSIVITY: A GIS APPROACH Australia-wide map of corrosivity , 1999 .

[74]  P. Dillmann,et al.  Study of lepidocrocite γ-FeOOH electrochemical reduction in neutral and slightly alkaline solutions at 25 °C , 2005 .

[75]  R. Cardell,et al.  THE INTERNAL STRUCTURE OF COLLOIDAL CRYSTALS OF β-FeOOH AND REMARKS ON THEIR ASSEMBLIES IN SCHILLER LAYERS , 1962 .

[76]  J. Jolivet Metal oxide chemistry and synthesis , 2013 .

[77]  Koji Hashimoto,et al.  The Mechanism of Atmospheric Rusting and the Protective Amorphous Rust on Low Alloy Steel(Chemistry) , 1974 .

[78]  W. A. Mckay,et al.  The characteristics of the shore-line sea spray aerosol and the landward transfer of radionuclides discharged to coastal sea water , 1994 .

[79]  T. Misawa,et al.  The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels , 1971 .

[80]  J. Saha Corrosion of Constructional Steels in Marine and Industrial Environment: Frontier Work in Atmospheric Corrosion , 2013 .

[81]  W. Ke,et al.  A study of the evolution of rust on weathering steel submitted to the Qinghai salt lake atmospheric corrosion , 2013 .

[82]  T. Ohtsuka,et al.  Monitoring the development of rust layers on weathering steel using in situ Raman spectroscopy under wet-and-dry cyclic conditions , 2015, Journal of Solid State Electrochemistry.

[83]  Masato Yamashita,et al.  Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge , 2007 .

[84]  Yuantai Ma,et al.  The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment , 2008 .

[85]  Y. Hisamatsu,et al.  Nature of Atmospheric Rust on Iron , 1980 .

[86]  M. Morcillo,et al.  SEM/Micro-Raman Characterization of the Morphologies of Marine Atmospheric Corrosion Products Formed on Mild Steel , 2016 .

[87]  Gallagher Kj The Atomic Structure of Tubular Subcrystals of β-Iron(III) Oxide Hydroxide , 1970 .

[88]  H. Eyring,et al.  Atmospheric Corrosion , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[89]  J. D. Bernal,et al.  The Oxides and Hydroxides of Iron and Their Structural Inter-Relationships , 1959 .

[90]  T. Misawa,et al.  The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature , 1974 .

[91]  A. Hache Contribution à l’étude de la corrosion de l'acier en solutions salines , 1956 .

[92]  M. J. ten Harkel,et al.  The effects of particle-size distribution and chloride depletion of sea-salt aerosols on estimating atmospheric deposition at a coastal site. , 1997 .

[93]  P. Refait,et al.  On the formation of -FeOOH (akaganite) in chloride-containing environments , 2007 .

[94]  P. Dillmann,et al.  Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion , 2004 .

[95]  H. Worch,et al.  Zum Rosten des Eisens , 1983 .

[96]  V. Lair,et al.  Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron , 2006 .

[97]  P. Refait,et al.  The oxidation of ferrous hydroxide in chloride-containing aqueous media and pourbaix diagrams of green rust one , 1993 .

[98]  Mark Gilberg,et al.  THE IDENTITY OF COMPOUNDS CONTAINING CHLORIDE IONS IN MARINE IRON CORROSION PRODUCTS: A CRITICAL REVIEW , 1981 .

[99]  M. Morcillo,et al.  Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity , 2013 .

[100]  Manuel Morcillo,et al.  Atmospheric corrosion of mild steel. Part II - Marine atmospheres , 2000 .

[101]  I. Cole,et al.  What really controls the atmospheric corrosion of zinc? Effect of marine aerosols on atmospheric corrosion of zinc , 2009 .

[102]  Kurt Nielsen,et al.  On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts , 2003 .

[103]  J. Wu Evidence of sea spray produced by bursting bubbles. , 1981, Science.

[104]  W. K. Boyd,et al.  Corrosion of metals in the atmosphere , 1974 .

[105]  Iván Díaz,et al.  Characterization of corrosion products formed on Ni 2.4 wt%–Cu 0.5 wt%–Cr 0.5 wt% weathering steel exposed in marine atmospheres , 2014 .

[106]  I. Cole,et al.  A Study of the Wetting of Metal Surfaces in Order to Understand the Processes Controlling Atmospheric Corrosion , 2004 .

[107]  Heidis Patricia Cano Cuadro Aceros patinables (Cu, Cr, Ni): resistencia a la corrosión atmosférica y soldabilidad , 2013 .

[108]  Koji Hashimoto,et al.  THE MECHANISM OF ATMOSPHERIC RUSTING AND THE PROTECTIVE AMORPHOUS RUST ON LOW ALLOY STEEL , 1974 .

[109]  M. Graham,et al.  Analysis of Iron Corrosion Products Using Mössbauer Spectroscopy , 1976 .

[110]  M. Morcillo,et al.  Atmospheric corrosion of mild steel in chloride‐rich environments. Questions to be answered , 2015 .

[111]  R. Kelly,et al.  Effect of Relative Humidity on Corrosion of Steel under Sea Salt Aerosol Proxies I. NaCl , 2014 .

[112]  Lixin Wu,et al.  Study of the corrosion behavior of weathering steels in atmospheric environments , 2013 .

[113]  Iván Díaz,et al.  Long-term atmospheric corrosion of mild steel , 2011 .

[114]  C. Maeda,et al.  Analysis for Structure of Rust Layer Formed on Weathering Steel Bridge for Bare Use Exposed in Coastal Industrial Zone for 27 Years , 2000 .

[115]  J. Mizuki,et al.  Characterization of Rust Layer Formed on Fe, Fe-Ni and Fe-Cr Alloys Exposed to Cl-Rich Environment by Cl and Fe K-Edge XANES Measurements , 2005 .

[116]  M. Morcillo,et al.  Scanning electron microscopy/micro-Raman: A very useful technique for characterizing the morphologies of rust phases formed on carbon steel in atmospheric exposures , 2016 .

[117]  A. Mackay β-Ferric Oxyhydroxide , 1960 .

[118]  S. Dean,et al.  Atmospheric Corrosion of Metals , 1982 .

[119]  Pierre R. Roberge,et al.  Atmospheric corrosivity modeling — a review , 2002 .

[120]  S. Musić,et al.  The atmospheric corrosion of iron as studied by Mössbauer spectroscopy , 1982 .

[121]  M. Abdelmoula,et al.  Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions , 1998 .

[122]  A. Mackay β-Ferric Oxyhydroxide—Akaganéite , 1962 .

[123]  Makoto Ohya,et al.  STUDY OF CORROSION LEVEL AND COMPOSITION OF ACCUMULATING SALT ON WEATHERING STEEL BRIDGES , 2007 .

[124]  E. G. COX,et al.  Structural Inorganic Chemistry , 1946, Nature.

[125]  L. Bellot-Gurlet,et al.  Structural characterization of corrosion products on archaeological iron: an integrated analytical approach to establish corrosion forms , 2004 .

[126]  J. Jiménez,et al.  Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques , 2016 .

[127]  R. Kelly,et al.  Effect of Relative Humidity on Corrosion of Steel under Sea Salt Aerosol Proxies II. MgCl2, Artificial Seawater , 2014 .

[128]  I. Guillot,et al.  Localisation of oxygen reduction sites in the case of iron long term atmospheric corrosion , 2011 .

[129]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[130]  Akemi Yasukawa,et al.  Characterization of Rust on Weathering Steel by Gas Adsorption , 2001 .

[131]  Robert E. Melchers,et al.  Long-term corrosion of cast irons and steel in marine and atmospheric environments , 2013 .

[132]  U. Schwertmann,et al.  The Transformation of Lepidocrocite to Goethite , 1972 .

[133]  H. R. Ambler,et al.  CORROSION OF METALS IN THE TROPICS , 2007 .

[134]  Ying Li,et al.  Corrosion of low carbon steel in atmospheric environments of different chloride content , 2009 .

[135]  C. A. Barrero,et al.  A proposal to evaluate the amount of corroded iron converted into adherent rust in steels exposed to corrosion , 2011 .

[136]  Katsuhiko Asami Characterization of Rust Layers on a Plain-Carbon Steel and Weathering Steels Exposed to Industrial and Coastal Atmosphere for Years , 2006 .

[137]  J. Génin,et al.  The substitution of chloride ions to OH−-Ions in the akaganeite beta ferric oxyhydroxide studied by Mössbauer effect , 1990 .

[138]  P. Dillmann,et al.  Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet–dry cycles , 2004 .

[139]  R. Nishimura,et al.  Atmospheric corrosion of carbon steel under field exposure in the southern part of Vietnam , 2006 .

[140]  L. Hihara,et al.  Atmospheric corrosion initiation on steel from predeposited NaCl salt particles in high humidity atmospheres , 2010 .

[141]  Takenori Nakayama,et al.  Assessment of protective function of steel rust layers by N2 adsorption , 2007 .

[142]  Hiroshi Kihira,et al.  Various Scale Analyses to Create Functioning Corrosion Products , 2006 .

[143]  W. Ke,et al.  Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere , 2014 .

[144]  M. Morcillo,et al.  Weathering steels: From empirical development to scientific design. A review , 2014 .

[145]  U. R. Evans,et al.  The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications , 1960 .

[146]  P. Stampfl Ein basisches eisen-II-III-karbonat in rost , 1969 .

[147]  K. E. García,et al.  Lost iron and iron converted into rust in steels submitted to dry–wet corrosion process , 2008 .

[148]  Manuel Morcillo,et al.  Effect of marine aerosol on atmospheric corrosion , 1999 .

[149]  Fulvio Zezza,et al.  Marine aerosol and stone decay , 1995 .

[150]  Shengxi Li,et al.  Atmospheric-Corrosion Electrochemistry of NaCl Droplets on Carbon Steel , 2012 .

[151]  G. Butler,et al.  The corrosion of mild steel in boiling salt solutions , 1967 .

[152]  Dalva Lúcia Araújo de Faria,et al.  Raman microspectroscopy of some iron oxides and oxyhydroxides , 1997 .

[153]  E. Paterson The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses , 1999 .

[154]  Y. Waseda,et al.  Structural Characterization for a Complex System by Obtaining Middle-Range Ordering , 2006 .

[155]  E. Han,et al.  Characterization of the rust formed on weathering steel exposed to Qinghai salt lake atmosphere , 2008 .

[156]  José A. González Fernández,et al.  Control de la corrosión: estudio y medida por técnicas electroquímicas , 1989 .

[157]  Francisco Corvo Perez,et al.  Atmospheric Corrosion of Steel in a Humid Tropical Climate—Influence of Pollution, Humidity, Temperature, Solar Radiation and Rainfall , 1984 .

[158]  Pedro Albrecht,et al.  A New Approach to Power-Model Regression of Corrosion Penetration Data , 1992 .

[159]  K. Okabayashi,et al.  A method for predicting the content of sea salt particles in the atmosphere , 1990 .

[160]  Pedro Albrecht,et al.  ATMOSPHERIC CORROSION RESISTANCE OF STRUCTURAL STEELS , 2003 .

[161]  S. Hara A X-Ray Diffraction Analysis on Constituent Distribution of Heavy Rust Layer Formed on Weathering Steel Using Synchrotron Radiation , 2008 .

[162]  Masato Yamashita,et al.  Composition and protective ability of rust layer formed on weathering steel exposed to various environments , 2006 .

[163]  I. Cole,et al.  Holistic model for atmospheric corrosion Part 6 – From wet aerosol to salt deposit , 2004 .

[164]  M. Morcillo,et al.  Wet/dry accelerated laboratory test to simulate the formation of multilayered rust on carbon steel in marine atmospheres , 2017 .

[165]  Ludovic Legrand,et al.  Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artefacts , 2007 .

[166]  Toshihiko Aso,et al.  Estimation of Quantity of CI- from Deicing Salts on Weathering Steel Used for Bridges , 2008 .

[167]  T. Graedel,et al.  Degradation of materials in the atmosphere , 1986 .

[168]  K. T. Whitby THE PHYSICAL CHARACTERISTICS OF SULFUR AEROSOLS , 1978 .