Electronic measurement of the Boltzmann constant with a quantum-voltage-calibrated Johnson noise thermometer

Currently, the CODATA value of the Boltzmann constant is dominated by a single gas-based thermometry measurement with a relative standard uncertainty of 1.8×10−6 [P.J. Mohr, B.N. Taylor, D.B. Newell, CODATA recommended values of the fundamental physical constants: 2006, Rev. Mod. Phys. 80 (2008) 633–730]. This article describes an electronic approach to measuring the Boltzmann constant that compares Johnson noise from a resistor at the water triple point with a pseudo-random noise generated using quantized ac-voltage synthesis. Measurement of the ratio of the two power spectral densities links Boltzmann's constant to Planck's constant. Recent experiments and detailed uncertainty analysis indicate that Boltzmann's constant can presently be determined using Johnson noise with a relative standard uncertainty below 10×10−6, which would support both historic and new determinations.

[1]  R. Dicke The measurement of thermal radiation at microwave frequencies. , 1946, The Review of scientific instruments.

[2]  Contact current distortion due to tunnel effect , 2000, Electrical Contacts - 2000. Proceedings of the Forty-Sixth IEEE Holm Conference on Electrical Contacts (Cat. No.00CB37081).

[3]  D. White,et al.  Detection of corruption in Gaussian processes with application to noise thermometry , 1998 .

[4]  John M. Martinis,et al.  Progress on Johnson noise thermometry using a quantum voltage noise source for calibration , 2005, IEEE Transactions on Instrumentation and Measurement.

[5]  John M. Martinis,et al.  A New Approach to Johnson Noise Thermometry using a Josephson Quantized Voltage Source , 2002 .

[6]  H. Fink A NEW ABSOLUTE NOISE THERMOMETER AT LOW TEMPERATURES , 1959 .

[7]  Horst Halling,et al.  Efficient FPGA-based multistage two-path decimation filter for noise thermometer , 2001, ICM 2001 Proceedings. The 13th International Conference on Microelectronics..

[8]  John M. Martinis,et al.  An AC Josephson source for Johnson noise thermometry , 2002, Conference Digest Conference on Precision Electromagnetic Measurements.

[9]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[10]  A Actis,et al.  The status of Johnson noise thermometry , 1996 .

[11]  A self-calibrating rhodium-iron resistive SQUID thermometer for the range below 0.5 K , 1980 .

[12]  Samuel P. Benz,et al.  A pulse‐driven programmable Josephson voltage standard , 1996 .

[13]  S. Benz,et al.  A Determination of the Ratio of the Zinc Freezing Point to the Tin Freezing Point by Noise Thermometry , 2008 .

[14]  Weston L. Tew,et al.  Measurement time and statistics for a noise thermometer with a synthetic-noise reference , 2008 .

[15]  J. Pekola,et al.  Primary tunnel junction thermometry. , 2008, Physical review letters.

[16]  J. Pekola,et al.  Thermometry by arrays of tunnel junctions. , 1994, Physical review letters.

[17]  R. Schoelkopf,et al.  Primary Electronic Thermometry Using the Shot Noise of a Tunnel Junction , 2003, Science.

[18]  John M. Martinis,et al.  Johnson noise thermometry measurements using a quantized voltage noise source for calibration , 2003, IEEE Trans. Instrum. Meas..

[19]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[20]  J. C. Gallop,et al.  Josephson noise thermometry with HTS devices , 1994 .

[21]  Samuel P. Benz,et al.  Reduced non-linearities and improved temperature measurements for the NIST Johnson noise thermometer , 2009 .

[22]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[23]  James F. Schooley,et al.  Temperature : its measurement and control in science and industry , 1992 .

[24]  R. A. Webb,et al.  Noise thermometry at ultralow temperatures , 1973 .

[25]  Sae Woo Nam,et al.  Improvements in the NIST Johnson noise thermometry system , 2008, 2008 Conference on Precision Electromagnetic Measurements Digest.

[26]  J. T. Zhang,et al.  A noise thermometry investigation of the melting point of gallium at the NIM , 2006 .

[27]  David White,et al.  A Ratiometric Method for Johnson Noise Thermometry Using a Quantized Voltage Noise Source , 2003 .

[28]  David White,et al.  Preamplifier limitations on the accuracy of Johnson noise thermometers , 2000 .

[29]  Weston L. Tew,et al.  Johnson Noise Thermometry near the Zinc Freezing Point Using Resistance-Based Scaling , 2007 .

[30]  S. P. Benz,et al.  Constraints on a synthetic-noise source for Johnson noise thermometry , 2008 .

[31]  J. Johnson Thermal Agitation of Electricity in Conductors , 1927, Nature.

[32]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[33]  J.X. Przybysz,et al.  Pulse-driven Josephson digital/analog converter [voltage standard] , 1998, IEEE Transactions on Applied Superconductivity.

[34]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[35]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[36]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.