Lensing Constraints on PBHs: Substellar to Intermediate Masses
暂无分享,去创建一个
Tenerife | Instituto Carlos I de F'isica Te'orica y Computacional | D. D. Astrof'isica | U. L. Laguna | E. Granada | E-38200 La Laguna | U. Granada | J. I. D. A. D. Canarias | Campus de Fuentenueva | SN V'iaL'actea | Departamento de F'isica Te'orica y del Cosmos | Spain | E. Mediavilla
[1] E. Mediavilla,et al. Constraints on the Abundance of Primordial Black Holes from X-Ray Quasar Microlensing Observations: Substellar to Planetary Mass Range , 2023, The Astrophysical Journal.
[2] E. Mediavilla,et al. Abundance of LIGO/Virgo Black Holes from Microlensing Observations of Quasars with Reverberation Mapping Size Estimates , 2022, The Astrophysical Journal.
[3] E. Mediavilla,et al. Limiting the Abundance of LIGO/Virgo Black Holes with Microlensing Observations of Quasars of Finite Size , 2022, The Astrophysical Journal Letters.
[4] Anne M. Green,et al. Effect of clustering on primordial black hole microlensing constraints , 2022, Journal of Cosmology and Astroparticle Physics.
[5] F. Timmes,et al. A highly magnified star at redshift 6.2 , 2022, Nature.
[6] E. Mediavilla,et al. The Impact of the Mass Spectrum of Lenses in Quasar Microlensing Studies. Constraints on a Mixed Population of Primordial Black Holes and Stars , 2020, The Astrophysical Journal.
[7] N. Raj,et al. Subaru-HSC through a different lens: Microlensing by extended dark matter structures , 2020, 2007.12697.
[8] A. Green,et al. Primordial black holes as a dark matter candidate , 2020, Journal of Physics G: Nuclear and Particle Physics.
[9] E. Mediavilla,et al. The Initial Mass Function of Lens Galaxies from Quasar Microlensing , 2019, The Astrophysical Journal.
[10] M. Takada,et al. Constraints on Earth-mass primordial black holes from OGLE 5-year microlensing events , 2019, Physical Review D.
[11] J. Kneib,et al. Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens , 2018, Nature Astronomy.
[12] J. García-Bellido,et al. Updating the MACHO fraction of the Milky Way dark halowith improved mass models , 2018, Monthly Notices of the Royal Astronomical Society.
[13] U. Seljak,et al. Limits on Stellar-Mass Compact Objects as Dark Matter from Gravitational Lensing of Type Ia Supernovae. , 2017, Physical review letters.
[14] J. Diego,et al. Understanding caustic crossings in giant arcs: Characteristic scales, event rates, and constraints on compact dark matter , 2017, 1710.00148.
[15] J. Miralda-Escud'e,et al. Microlensing of Extremely Magnified Stars near Caustics of Galaxy Clusters , 2017, 1707.00003.
[16] E. Mediavilla,et al. Limits on the Mass and Abundance of Primordial Black Holes from Quasar Gravitational Microlensing , 2017, 1702.00947.
[17] T. Yanagida,et al. Inflationary Primordial Black Holes as All Dark Matter , 2017, 1701.02544.
[18] R. Lupton,et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations , 2017, Nature Astronomy.
[19] H. Rix,et al. Detection of Time Lags between Quasar Continuum Emission Bands Based On Pan-STARRS Light Curves , 2016, 1612.08747.
[20] Tenerife,et al. PROBING THE DARK MATTER RADIAL PROFILE IN LENS GALAXIES AND THE SIZE OF X-RAY EMITTING REGION IN QUASARS WITH MICROLENSING , 2015, 1502.00394.
[21] Tenerife,et al. DARK MATTER MASS FRACTION IN LENS GALAXIES: NEW ESTIMATES FROM MICROLENSING , 2014, 1407.3955.
[22] P. Schechter,et al. A CALIBRATION OF THE STELLAR MASS FUNDAMENTAL PLANE AT z ∼ 0.5 USING THE MICRO-LENSING-INDUCED FLUX RATIO ANOMALIES OF MACRO-LENSED QUASARS,, , 2014, 1405.0038.
[23] C. Rusu,et al. The stellar and dark matter distributions in elliptical galaxies from the ensemble of strong gravitational lenses , 2013, 1309.5408.
[24] M. Moniez. Microlensing as a probe of the Galactic structure: 20 years of microlensing optical depth studies , 2010, 1001.2707.
[25] E. Falco,et al. MICROLENSING-BASED ESTIMATE OF THE MASS FRACTION IN COMPACT OBJECTS IN LENS GALAXIES , 2009, 0910.3645.
[26] P. Schechter,et al. X-Ray and Optical Flux Ratio Anomalies in Quadruply Lensed Quasars. I. Zooming in on Quasar Emission Regions , 2006, astro-ph/0607655.
[27] J. Beaulieu,et al. Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds , 2006, astro-ph/0607207.
[28] P. Schechter,et al. Qualitative Aspects of Quasar Microlensing with Two Mass Components: Magnification Patterns and Probability Distributions , 2004, astro-ph/0403558.
[29] P. Schechter,et al. The dark matter content of lensing galaxies at 1.5 R_e , 2003, astro-ph/0309163.
[30] P. Schechter,et al. Quasar Microlensing at High Magnification and the Role of Dark Matter: Enhanced Fluctuations and Suppressed Saddle Points , 2002, astro-ph/0204425.
[31] A. J. Drake,et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations , 2000, astro-ph/0001272.
[32] M. Irwin,et al. The statistics of microlensing light curves — II. Temporal analysis , 1996 .
[33] P. Schechter,et al. On the universality of microlensing in quadruple gravitational lenses , 1995 .
[34] L. Vigroux,et al. Evidence for gravitational microlensing by dark objects in the Galactic halo , 1993, Nature.
[35] B. Peterson,et al. Possible gravitational microlensing of a star in the Large Magellanic Cloud , 1993, Nature.
[36] M. Irwin,et al. Interpreting the light curve of Q2237+0305 , 1991 .
[37] Bohdan Paczynski,et al. Gravitational microlensing by the galactic halo , 1986 .
[38] S. Refsdal,et al. Flux variations of QSO 0957 + 561 A, B and image splitting by stars near the light path , 1979, Nature.
[39] N. Gehrels,et al. UvA-DARE ( Digital Academic Repository ) Space Telescope and Optical Reverberation Mapping Project . II . Swift and HST Reverberation Mapping of the Accretion Disk of NGC 5548 , 2015 .
[40] K. Jedamzik. Primordial Black Holes as Dark Matter , 2001 .
[41] Bohdan Paczynski,et al. The optical gravitational lensing experiment. Discovery of the first candidate microlensing event in the direction of the Galactic Bulge , 1993 .