Lensing Constraints on PBHs: Substellar to Intermediate Masses

Gravitational microlensing is a robust tool to detect and directly measure the abundance and mass of any kind of compact objects, either in our galaxy or in the extragalatic domain. On basis to generic, broadly applicable arguments, it is concluded that the observed microlensing magnifications are too small and the microlensing events less frequent than the expectations for a significant population of compact objects (other than normal stars). The detection of chromatic effects of microlensing, neither supports the presence of BHs. Detailed statistical studies of the observed microlensing magnifications and events frequency impose strict upper limits to the fraction of total mass of BHs ($\ltsim$ 1\%) from $10^{-7}M_\odot$ to indefinitely large masses. These results hold even when the BHs are distributed according to a mass spectrum or are forming clusters.

[1]  E. Mediavilla,et al.  Constraints on the Abundance of Primordial Black Holes from X-Ray Quasar Microlensing Observations: Substellar to Planetary Mass Range , 2023, The Astrophysical Journal.

[2]  E. Mediavilla,et al.  Abundance of LIGO/Virgo Black Holes from Microlensing Observations of Quasars with Reverberation Mapping Size Estimates , 2022, The Astrophysical Journal.

[3]  E. Mediavilla,et al.  Limiting the Abundance of LIGO/Virgo Black Holes with Microlensing Observations of Quasars of Finite Size , 2022, The Astrophysical Journal Letters.

[4]  Anne M. Green,et al.  Effect of clustering on primordial black hole microlensing constraints , 2022, Journal of Cosmology and Astroparticle Physics.

[5]  F. Timmes,et al.  A highly magnified star at redshift 6.2 , 2022, Nature.

[6]  E. Mediavilla,et al.  The Impact of the Mass Spectrum of Lenses in Quasar Microlensing Studies. Constraints on a Mixed Population of Primordial Black Holes and Stars , 2020, The Astrophysical Journal.

[7]  N. Raj,et al.  Subaru-HSC through a different lens: Microlensing by extended dark matter structures , 2020, 2007.12697.

[8]  A. Green,et al.  Primordial black holes as a dark matter candidate , 2020, Journal of Physics G: Nuclear and Particle Physics.

[9]  E. Mediavilla,et al.  The Initial Mass Function of Lens Galaxies from Quasar Microlensing , 2019, The Astrophysical Journal.

[10]  M. Takada,et al.  Constraints on Earth-mass primordial black holes from OGLE 5-year microlensing events , 2019, Physical Review D.

[11]  J. Kneib,et al.  Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens , 2018, Nature Astronomy.

[12]  J. García-Bellido,et al.  Updating the MACHO fraction of the Milky Way dark halowith improved mass models , 2018, Monthly Notices of the Royal Astronomical Society.

[13]  U. Seljak,et al.  Limits on Stellar-Mass Compact Objects as Dark Matter from Gravitational Lensing of Type Ia Supernovae. , 2017, Physical review letters.

[14]  J. Diego,et al.  Understanding caustic crossings in giant arcs: Characteristic scales, event rates, and constraints on compact dark matter , 2017, 1710.00148.

[15]  J. Miralda-Escud'e,et al.  Microlensing of Extremely Magnified Stars near Caustics of Galaxy Clusters , 2017, 1707.00003.

[16]  E. Mediavilla,et al.  Limits on the Mass and Abundance of Primordial Black Holes from Quasar Gravitational Microlensing , 2017, 1702.00947.

[17]  T. Yanagida,et al.  Inflationary Primordial Black Holes as All Dark Matter , 2017, 1701.02544.

[18]  R. Lupton,et al.  Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations , 2017, Nature Astronomy.

[19]  H. Rix,et al.  Detection of Time Lags between Quasar Continuum Emission Bands Based On Pan-STARRS Light Curves , 2016, 1612.08747.

[20]  Tenerife,et al.  PROBING THE DARK MATTER RADIAL PROFILE IN LENS GALAXIES AND THE SIZE OF X-RAY EMITTING REGION IN QUASARS WITH MICROLENSING , 2015, 1502.00394.

[21]  Tenerife,et al.  DARK MATTER MASS FRACTION IN LENS GALAXIES: NEW ESTIMATES FROM MICROLENSING , 2014, 1407.3955.

[22]  P. Schechter,et al.  A CALIBRATION OF THE STELLAR MASS FUNDAMENTAL PLANE AT z ∼ 0.5 USING THE MICRO-LENSING-INDUCED FLUX RATIO ANOMALIES OF MACRO-LENSED QUASARS,, , 2014, 1405.0038.

[23]  C. Rusu,et al.  The stellar and dark matter distributions in elliptical galaxies from the ensemble of strong gravitational lenses , 2013, 1309.5408.

[24]  M. Moniez Microlensing as a probe of the Galactic structure: 20 years of microlensing optical depth studies , 2010, 1001.2707.

[25]  E. Falco,et al.  MICROLENSING-BASED ESTIMATE OF THE MASS FRACTION IN COMPACT OBJECTS IN LENS GALAXIES , 2009, 0910.3645.

[26]  P. Schechter,et al.  X-Ray and Optical Flux Ratio Anomalies in Quadruply Lensed Quasars. I. Zooming in on Quasar Emission Regions , 2006, astro-ph/0607655.

[27]  J. Beaulieu,et al.  Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds , 2006, astro-ph/0607207.

[28]  P. Schechter,et al.  Qualitative Aspects of Quasar Microlensing with Two Mass Components: Magnification Patterns and Probability Distributions , 2004, astro-ph/0403558.

[29]  P. Schechter,et al.  The dark matter content of lensing galaxies at 1.5 R_e , 2003, astro-ph/0309163.

[30]  P. Schechter,et al.  Quasar Microlensing at High Magnification and the Role of Dark Matter: Enhanced Fluctuations and Suppressed Saddle Points , 2002, astro-ph/0204425.

[31]  A. J. Drake,et al.  The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations , 2000, astro-ph/0001272.

[32]  M. Irwin,et al.  The statistics of microlensing light curves — II. Temporal analysis , 1996 .

[33]  P. Schechter,et al.  On the universality of microlensing in quadruple gravitational lenses , 1995 .

[34]  L. Vigroux,et al.  Evidence for gravitational microlensing by dark objects in the Galactic halo , 1993, Nature.

[35]  B. Peterson,et al.  Possible gravitational microlensing of a star in the Large Magellanic Cloud , 1993, Nature.

[36]  M. Irwin,et al.  Interpreting the light curve of Q2237+0305 , 1991 .

[37]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[38]  S. Refsdal,et al.  Flux variations of QSO 0957 + 561 A, B and image splitting by stars near the light path , 1979, Nature.

[39]  N. Gehrels,et al.  UvA-DARE ( Digital Academic Repository ) Space Telescope and Optical Reverberation Mapping Project . II . Swift and HST Reverberation Mapping of the Accretion Disk of NGC 5548 , 2015 .

[40]  K. Jedamzik Primordial Black Holes as Dark Matter , 2001 .

[41]  Bohdan Paczynski,et al.  The optical gravitational lensing experiment. Discovery of the first candidate microlensing event in the direction of the Galactic Bulge , 1993 .