Carbon–Inorganic Hybrid Materials: The Carbon‐Nanotube/TiO2 Interface

[1]  A. Gedanken,et al.  Carbon-coated anatase TiO2 nanocomposite as a high-performance electrocatalyst support. , 2007, Small.

[2]  Malcolm L. H. Green,et al.  The Role of Carboxylated Carbonaceous Fragments in the Functionalization and Spectroscopy of a Single‐Walled Carbon‐Nanotube Material , 2007 .

[3]  J. Banfield,et al.  Mechanism of inhibition of nanoparticle growth and phase transformation by surface impurities. , 2007, Physical review letters.

[4]  Anusorn Kongkanand,et al.  Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. , 2007, Nano letters.

[5]  Xingbin Yan,et al.  Dispersing and functionalizing multiwalled carbon nanotubes in TiO2 sol. , 2006, The journal of physical chemistry. B.

[6]  Hui-Chi Huang,et al.  Immobilization of TiO2 nanoparticles on carbon nanocapsules for photovoltaic applications , 2006 .

[7]  I. Kinloch,et al.  Pure rutile nanotubes. , 2006, Chemical communications.

[8]  A. Govindaraj,et al.  Chemically Bonded Ceramic Oxide Coatings on Carbon Nanotubes and Inorganic Nanowires , 2005 .

[9]  L. Curtiss,et al.  Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. , 2005, Nano letters.

[10]  M. Han,et al.  Aminolysis route to monodisperse titania nanorods with tunable aspect ratio. , 2005, Angewandte Chemie.

[11]  Liping Li,et al.  High purity anatase TiO(2) nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. , 2005, Journal of the American Chemical Society.

[12]  Xue-ming Ma,et al.  Phase transformations in nanocrystalline TiO2 milled in different milling atmospheres , 2004 .

[13]  D. Fitzmaurice,et al.  Templated Assembly of Semiconductor and Insulator Nanoparticles at the Surface of Covalently Modified Multiwalled Carbon Nanotubes , 2004 .

[14]  S. Bonnamy,et al.  Synthesis and characterization of carbon nanotubes–TiO2 nanocomposites , 2004 .

[15]  A. Reller,et al.  Photoinduced reactivity of titanium dioxide , 2004 .

[16]  Liping Li,et al.  Grain-growth kinetics of rutile TiO 2 nanocrystals under hydrothermal conditions , 2003 .

[17]  L. Gao,et al.  Immobilization of rutile TiO2 on multiwalled carbon nanotubes , 2003 .

[18]  I. Kinloch,et al.  Towards the production of large-scale aligned carbon nanotubes , 2003 .

[19]  D. Eder,et al.  Stoichiometry of “titanium suboxide” , 2003 .

[20]  M. Toyoda,et al.  Carbon coating of anatase-type TiO2 through their precipitation in PVA aqueous solution , 2003 .

[21]  P. Vincent,et al.  Inclusion of carbon nanotubes in a TiO2 sol–gel matrix , 2002 .

[22]  G. Stucky,et al.  Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. , 2002, Journal of the American Chemical Society.

[23]  G. Stucky,et al.  Benzyl alcohol and titanium tetrachloride - A versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles , 2002 .

[24]  Reinhard Nesper,et al.  Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology. , 2002, Angewandte Chemie.

[25]  M. Toyoda,et al.  Carbon coating of anatase-type TiO2 and photoactivity , 2002 .

[26]  C. Y. Xu,et al.  Blue shift of Raman peak from coated TiO2 nanoparticles , 2001 .

[27]  B. Ohtani,et al.  Mechanism of photocatalytic production of active oxygens on highly crystalline TiO2 particles by means of chemiluminescent probing and ESR spectroscopy , 2001 .

[28]  Chao-Nan Xu,et al.  Selective detection of NH3 over NO in combustion exhausts by using Au and MoO3 doubly promoted WO3 element , 2000 .

[29]  N. Wu,et al.  Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides. , 1999, Science.

[30]  Jackie Y. Ying,et al.  Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts , 1998 .

[31]  P. P. Lottici,et al.  Phonon confinement effects in the Raman scattering by TiO2 nanocrystals , 1998 .

[32]  R. Raghavan,et al.  In Situ Fourier Transform Infrared Characterization of the Effect of Electrical Fields on the Flame Synthesis of TiO2 Particles , 1997 .

[33]  J. Banfield,et al.  Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2 , 1997 .

[34]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[35]  P. P. Lottici,et al.  Raman scattering characterization of gel-derived titania glass , 1993 .

[36]  Tatsuya Okubo,et al.  Densification of nanostructured titania assisted by a phase transformation , 1992, Nature.

[37]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[38]  R. Averback,et al.  Grain growth in nanocrystalline TiO2 and its relation to vickers hardness and fracture toughness , 1990 .

[39]  J. C. Parker,et al.  Raman microprobe study of nanophase TiO_2 and oxidation-induced spectral changes , 1990 .

[40]  W. Collier,et al.  Spectroscopically evaluated rates and energies for proton transfer and Bjerrum defect migration in cubic ice , 1984 .

[41]  S. R. Yoganarasimhan,et al.  Mechanism of crystal structure transformations. Part 3. Factors affecting the anatase-rutile transformation , 1962 .