Ground state of the Bethe lattice spin glass and running time of an exact optimization algorithm

We study the Ising spin glass on random graphs with fixed connectivity z and with a Gaussian distribution of the couplings, with mean $\ensuremath{\mu}$ and unit variance. We compute exact ground states by using a sophisticated branch-and-cut method for $z=4,6$ and system sizes up to 1280 spins, for different values of $\ensuremath{\mu}.$ We locate the spin-glass/ferromagnet phase transition at $\ensuremath{\mu}=0.77\ifmmode\pm\else\textpm\fi{}0.02(z=4)$ and $\ensuremath{\mu}=0.56\ifmmode\pm\else\textpm\fi{}0.02(z=6).$ We also compute the energy and magnetization in the Bethe-Peierls approximation with a stochastic method, and estimate the magnitude of replica symmetry breaking corrections. Near the phase transition, we observe a sharp change of the median running time of our implementation of the algorithm, consistent with a change from a polynomial dependence on the system size, deep in the ferromagnetic phase, to slower than polynomial in the spin-glass phase.

[1]  A. Young,et al.  Triviality of the Ground State Structure in Ising Spin Glasses , 1999, cond-mat/9906323.

[2]  M. Mézard,et al.  The Bethe lattice spin glass revisited , 2000, cond-mat/0009418.

[3]  D. Thouless,et al.  Spin-glass on a Bethe lattice. , 1986, Physical review letters.

[4]  P. Mottishaw,et al.  Replica Symmetry Breaking and the Spin-Glass on a Bethe Lattice , 1987 .

[5]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[6]  M. Mézard,et al.  The Cavity Method at Zero Temperature , 2002, cond-mat/0207121.

[7]  Kardar,et al.  Exact integer algorithm for the two-dimensional +/-J Ising spin glass. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Jan Vondrák,et al.  Optimization via enumeration: a new algorithm for the Max Cut Problem , 2001, Math. Program..

[9]  O. C. Martin,et al.  RENORMALIZATION FOR DISCRETE OPTIMIZATION , 1999 .

[10]  Alexander K. Hartmann,et al.  The number of guards needed by a museum: A phase transition in vertex covering of random graphs , 2000, Physical review letters.

[11]  S Cocco,et al.  Trajectories in phase diagrams, growth processes, and computational complexity: how search algorithms solve the 3-satisfiability problem. , 2001, Physical review letters.

[12]  Large-Scale, Low-Energy Excitations in the Two-Dimensional Ising Spin Glass , 2002, cond-mat/0205659.

[13]  T. H. Klotz,et al.  "Valley structures" in the phase space of a finite 3d ISING spin glass with , 1994 .

[14]  K. Binder Finite size scaling analysis of ising model block distribution functions , 1981 .

[15]  Monte Carlo simulations of the Ising spin glass on lattices with finite connectivity , 1989 .

[16]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[17]  S. Mertens Phase Transition in the Number Partitioning Problem , 1998, cond-mat/9807077.

[18]  K. F. Pál The ground state of the cubic spin glass with short-range interactions of Gaussian distribution , 1996 .

[19]  S. Kobe,et al.  A recursive branch-and-bound algorithm for the exact ground state of Ising spin-glass models , 1984 .

[20]  S. Boettcher Numerical results for ground states of spin glasses on Bethe lattices , 2002, cond-mat/0208196.

[21]  Martin Grötschel,et al.  An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988, Oper. Res..

[22]  Berg,et al.  New approach to spin-glass simulations. , 1992, Physical review letters.

[23]  G. Rinaldi,et al.  Exact ground states of Ising spin glasses: New experimental results with a branch-and-cut algorithm , 1995 .

[24]  Alexander K. Hartmann,et al.  Typical solution time for a vertex-covering algorithm on finite-connectivity random graphs , 2001, Physical review letters.

[25]  Lawrence K. Saul,et al.  The 2D±J Ising spin glass: exact partition functions in polynomial time , 1994 .

[26]  Alexander K. Hartmann,et al.  SCALING OF STIFFNESS ENERGY FOR THREE-DIMENSIONAL J ISING SPIN GLASSES , 1999 .

[27]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[28]  G. Rinaldi,et al.  Exact ground states of two-dimensional ±J Ising spin glasses , 1996 .

[29]  A. Bray,et al.  Phase diagrams for dilute spin glasses , 1985 .

[30]  M. W. Klein,et al.  Spin glasses in the Bethe-Peierls-Weiss and other mean-field approximations , 1979 .

[31]  Nicholas C. Wormald,et al.  Generating Random Regular Graphs Quickly , 1999, Combinatorics, Probability and Computing.

[32]  D. Sherrington,et al.  Graph bipartitioning and statistical mechanics , 1987 .

[33]  Stephan Mertens Computational complexity for physicists , 2002, Comput. Sci. Eng..

[34]  R. Monasson,et al.  Statistical Mechanics of the K--Satisfiability Model , 1996, cond-mat/9606215.

[35]  L. Bieche,et al.  On the ground states of the frustration model of a spin glass by a matching method of graph theory , 1980 .