A geometric understanding of how fast activating potassium channels promote bursting in pituitary cells

The electrical activity of endocrine pituitary cells is mediated by a plethora of ionic currents and establishing the role of a single channel type is difficult. Experimental observations have shown however that fast-activating voltage- and calcium-dependent potassium (BK) current tends to promote bursting in pituitary cells. This burst promoting effect requires fast activation of the BK current, otherwise it is inhibitory to bursting. In this work, we analyze a pituitary cell model in order to answer the question of why the BK activation must be fast to promote bursting. We also examine how the interplay between the activation rate and conductance of the BK current shapes the bursting activity. We use the multiple timescale structure of the model to our advantage and employ geometric singular perturbation theory to demonstrate the origin of the bursting behaviour. In particular, we show that the bursting can arise from either canard dynamics or slow passage through a dynamic Hopf bifurcation. We then compare our theoretical predictions with experimental data using the dynamic clamp technique and find that the data is consistent with a burst mechanism due to a slow passage through a Hopf.

[1]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[2]  David Terman,et al.  Mathematical foundations of neuroscience , 2010 .

[3]  Horacio G. Rotstein,et al.  Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal Cortex Layer II Stellate Cell Model , 2008, SIAM J. Appl. Dyn. Syst..

[4]  C. Kuehn A mathematical framework for critical transitions: Bifurcations, fast–slow systems and stochastic dynamics , 2011, 1101.2899.

[5]  John Rinzel,et al.  Bursting oscillations in an excitable membrane model , 1985 .

[6]  A B Robson,et al.  Analysis of a reduced model of corticotroph action potentials. , 1998, Journal of theoretical biology.

[7]  E. J. Doedel,et al.  AUTO: a program for the automatic bifurcation analysis of autonomous systems , 1980 .

[8]  Arthur Sherman,et al.  Full system bifurcation analysis of endocrine bursting models. , 2010, Journal of theoretical biology.

[9]  R. Latorre,et al.  Large conductance Ca 2 +-activated K + ( BK ) channel : Activation by Ca 2 + and voltage , 2006 .

[10]  E. Marder,et al.  Dynamic clamp: computer-generated conductances in real neurons. , 1993, Journal of neurophysiology.

[11]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[12]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[13]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[14]  N. K. Rozov,et al.  Differential Equations with Small Parameters and Relaxation Oscillations , 1980 .

[15]  Horacio G. Rotstein,et al.  Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis. , 2008, Chaos.

[16]  Richard Bertram,et al.  Multiple Geometric Viewpoints of Mixed Mode Dynamics Associated with Pseudo-plateau Bursting , 2013, SIAM J. Appl. Dyn. Syst..

[17]  Maurizio Taglialatela,et al.  Low expression of Kv7/M channels facilitates intrinsic and network bursting in the developing rat hippocampus , 2008, The Journal of physiology.

[18]  Sc Chikwendu Asymptotic Solutions of the Non-Linear Wave Equation of Van-Der-Pol Type on the Infinite Line , 1983 .

[19]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[20]  J. Rubin,et al.  Geometric Singular Perturbation Analysis of Neuronal Dynamics , 2002 .

[21]  Arthur Sherman,et al.  Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs: experiments and theory. , 2007, Journal of neurophysiology.

[22]  Richard Bertram,et al.  Mixed mode oscillations as a mechanism for pseudo-plateau bursting , 2010, Journal of Computational Neuroscience.

[23]  G. York,et al.  Congenital and Acquired Cognitive Disorders , 1981, Neurology.

[24]  J. Rubin,et al.  The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. , 2008, Chaos.

[25]  R. Bertram,et al.  Topological and phenomenological classification of bursting oscillations , 1995 .

[26]  H M Osinga,et al.  Dynamics of Plateau Bursting Depending on the Location of its Equilibrium , 2010, Journal of neuroendocrinology.

[27]  Vivien Kirk,et al.  Multiple Timescales, Mixed Mode Oscillations and Canards in Models of Intracellular Calcium Dynamics , 2011, J. Nonlinear Sci..

[28]  P. Sah,et al.  Channels underlying neuronal calcium-activated potassium currents , 2002, Progress in Neurobiology.

[29]  Irina Erchova,et al.  Rhythms of the brain: an examination of mixed mode oscillation approaches to the analysis of neurophysiological data. , 2008, Chaos.

[30]  Martin Wechselberger,et al.  Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..

[31]  M. Wechselberger À propos de canards (Apropos canards) , 2012 .

[32]  J Rinzel,et al.  Domain model for Ca2(+)-inactivation of Ca2+ channels at low channel density. , 1990, Biophysical journal.

[33]  Arthur Sherman,et al.  Resetting Behavior in a Model of Bursting in Secretory Pituitary Cells: Distinguishing Plateaus from Pseudo-Plateaus , 2008, Bulletin of mathematical biology.

[34]  Richard Bertram,et al.  From Plateau to Pseudo-Plateau Bursting: Making the Transition , 2011, Bulletin of mathematical biology.

[35]  S. H. Chandler,et al.  Outward currents influencing bursting dynamics in guinea pig trigeminal motoneurons. , 1999, Journal of neurophysiology.

[36]  A. Y. Kolesov,et al.  Asymptotic Methods in Singularly Perturbed Systems , 1994 .

[37]  Richard Bertram,et al.  Ion channels and signaling in the pituitary gland. , 2010, Endocrine reviews.

[38]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[39]  J. Grasman Asymptotic Methods for Relaxation Oscillations and Applications , 1987 .

[40]  Hayato Chiba,et al.  Periodic orbits and chaos in fast–slow systems with Bogdanov–Takens type fold points , 2008, 0812.1446.

[41]  B. Fakler,et al.  Control of KCa Channels by Calcium Nano/Microdomains , 2008, Neuron.

[42]  Hana Zemkova,et al.  Biophysical basis of pituitary cell type-specific Ca2+ signaling–secretion coupling , 2005, Trends in Endocrinology & Metabolism.

[43]  Stanko S. Stojilkovic,et al.  Dependence of Pituitary Hormone Secretion on the Pattern of Spontaneus Voltage-gated Calcium Influx , 2001, The Journal of Biological Chemistry.

[44]  Peter Szmolyan,et al.  Relaxation oscillations in R3 , 2004 .

[45]  P. Szmolyana,et al.  Relaxation oscillations in R 3 , 2004 .

[46]  R. Latorre,et al.  Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage. , 2006, Biological research.

[47]  David Terman,et al.  Chaotic spikes arising from a model of bursting in excitable membranes , 1991 .

[48]  Martin Golubitsky,et al.  An unfolding theory approach to bursting in fast–slow systems , 2001 .

[49]  Christian Kuehn,et al.  Hunting French Ducks in a Noisy Environment , 2010, 1011.3193.

[50]  Martin Wechselberger,et al.  Bifurcations of mixed-mode oscillations in a stellate cell model , 2009 .

[51]  Hinke M. Osinga,et al.  The role of large-conductance Calcium-activated K+ (BK) channels in shaping bursting oscillations of a somatotroph cell model , 2010 .

[52]  Pablo Miranda,et al.  Role of BK Potassium Channels Shaping Action Potentials and the Associated [Ca2+]i Oscillations in GH3 Rat Anterior Pituitary Cells , 2003, Neuroendocrinology.

[53]  Richard Bertram,et al.  NEGATIVE CALCIUM FEEDBACK: THE ROAD FORM CHAY-KEIZER , 2005 .

[54]  J. Rinzel,et al.  The slow passage through a Hopf bifurcation: delay, memory effects, and resonance , 1989 .

[55]  S. Stojilkovic,et al.  Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. Cell type-specific action potential secretion coupling. , 2001, The Journal of biological chemistry.

[56]  Bard Ermentrout,et al.  Canards, Clusters, and Synchronization in a Weakly Coupled Interneuron Model , 2009, SIAM J. Appl. Dyn. Syst..

[57]  Martin Krupa,et al.  Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .

[58]  Richard Bertram,et al.  The dynamics underlying pseudo-plateau bursting in a pituitary cell model , 2011, Journal of mathematical neuroscience.

[59]  H. Broer,et al.  Global Analysis of Dynamical Systems , 2001 .

[60]  Richard Bertram,et al.  Fast-Activating Voltage- and Calcium-Dependent Potassium (BK) Conductance Promotes Bursting in Pituitary Cells: A Dynamic Clamp Study , 2011, The Journal of Neuroscience.