MRI contrast agents based on dysprosium or holmium.

[1]  Kooijman,et al.  Diaquatris(pentane-2,4-dionato-O,O')holmium(III) monohydrate and diaquatris(pentane-2,4-dionato-O,O')holmium(III) 4-hydroxypentan-2-one solvate dihydrate , 2000, Acta crystallographica. Section C, Crystal structure communications.

[2]  E. A. Waters,et al.  Contrast agents for MRI , 2008, Basic Research in Cardiology.

[3]  Sophie Laurent,et al.  Classification and basic properties of contrast agents for magnetic resonance imaging. , 2009, Contrast media & molecular imaging.

[4]  L W Bartels,et al.  Endovascular interventional magnetic resonance imaging. , 2003, Physics in medicine and biology.

[5]  L. Tei,et al.  Evidence for in vivo macrophage mediated tumor uptake of paramagnetic/fluorescent liposomes , 2009, NMR in biomedicine.

[6]  Kaung-Ti Yung Empirical models of transverse relaxation for spherical magnetic perturbers. , 2003, Magnetic resonance imaging.

[7]  B. Rosen,et al.  Dynamic imaging with lanthanide chelates in normal brain: Contrast due to magnetic susceptibility effects , 1988, Magnetic resonance in medicine.

[8]  Enzo Terreno,et al.  Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. , 2009, Accounts of chemical research.

[9]  Enzo Terreno,et al.  Encoding the frequency dependence in MRI contrast media: the emerging class of CEST agents. , 2010, Contrast media & molecular imaging.

[10]  C. Higgins,et al.  Identification of Myocardial Cell Death in Reperfused Myocardial Injury Using Dual Mechanisms of Contrast-Enhanced Magnetic Resonance Imaging , 1994 .

[11]  T. Leiner,et al.  Risk factors for NSF: A literature review , 2009, Journal of magnetic resonance imaging : JMRI.

[12]  M E Moseley,et al.  Perfusion and diffusion MR imaging of thromboembolic stroke , 1993, Journal of magnetic resonance imaging : JMRI.

[13]  R. Brooks,et al.  On T2‐shortening by weakly magnetized particles: The chemical exchange model † , 2001, Magnetic resonance in medicine.

[14]  Jurriaan Huskens,et al.  Lanthanide induced shifts and relaxation rate enhancements , 1996 .

[15]  C. Yeh,et al.  Superparamagnetic Hollow and Paramagnetic Porous Gd2O3 Particles , 2008 .

[16]  E. Haacke,et al.  Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime , 1994, Magnetic resonance in medicine.

[17]  M. Botta,et al.  Water signal suppression by T2‐relaxation enhancement promoted by Dy(III) complexes , 1991 .

[18]  Joop A. Peters,et al.  Evaluation of [Ln(H2cmp)(H2O)] metal organic framework materials for potential application as magnetic resonance imaging contrast agents. , 2010, Inorganic chemistry.

[19]  Charu Thakral,et al.  Long-term retention of gadolinium in tissues from nephrogenic systemic fibrosis patient after multiple gadolinium-enhanced MRI scans: case report and implications. , 2007, Contrast media & molecular imaging.

[20]  P. V. van Rijk,et al.  Lanthanide bearing microparticulate systems for multi-modality imaging and targeted therapy of cancer. , 2005, Current medicinal chemistry. Anti-cancer agents.

[21]  F. Rösch Radiolanthanides in endoradiotherapy: an overview , 2007 .

[22]  J. Reichenbach,et al.  Theory and application of static field inhomogeneity effects in gradient‐echo imaging , 1997, Journal of magnetic resonance imaging : JMRI.

[23]  M. Greenfield,et al.  Molecular factors that determine Curie spin relaxation in dysprosium complexes † , 2001, Magnetic resonance in medicine.

[24]  K. Yu,et al.  Delineation of acute myocardial infarction with dysprosium DTPA-BMA: influence of dose of magnetic susceptibility contrast medium. , 1992, Journal of the American College of Cardiology.

[25]  Matthew E Merritt,et al.  Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI , 2005, Magnetic resonance in medicine.

[26]  J. Bulte,et al.  Dy‐DTPA derivatives as relaxation agents for very high field MRI: The beneficial effect of slow water exchange on the transverse relaxivities , 2002, Magnetic resonance in medicine.

[27]  M. Guéron,et al.  Nuclear relaxation in macromolecules by paramagnetic ions: a novel mechanism , 1975 .

[28]  R. Weisskoff,et al.  MRI susceptometry: Image‐based measurement of absolute susceptibility of MR contrast agents and human blood , 1992, Magnetic resonance in medicine.

[29]  N. Serkova,et al.  Toxicity of MRI and CT contrast agents , 2009 .

[30]  Mats Wikstrom MR imaging of experimental myocardial infarction. , 1992 .

[31]  M E Moseley,et al.  Comparison of Gd‐ and Dy‐chelates for T2* Contrast‐Enhanced Imaging , 1991, Magnetic resonance in medicine.

[32]  H. Lal,et al.  Magnetic susceptibility of heavy rare-earth sesquioxides , 1978 .

[33]  K. Uğurbil,et al.  Contrast agents for cerebral perfusion MR imaging , 1994, Journal of magnetic resonance imaging : JMRI.

[34]  W. Hennink,et al.  Microspheres with Ultrahigh Holmium Content for Radioablation of Malignancies , 2009, Pharmaceutical Research.

[35]  Joop A. Peters,et al.  NMR transversal relaxivity of aqueous suspensions of particles of Ln(3+)-based zeolite type materials. , 2008, Dalton transactions.

[36]  S. Rocklage,et al.  Chelates of gadolinium and dysprosium as contrast agents for MR imaging , 1993, Journal of magnetic resonance imaging : JMRI.

[37]  W. Hennink,et al.  Surface characteristics of holmium-loaded poly(L-lactic acid) microspheres. , 2005, Biomaterials.

[38]  Joop A. Peters,et al.  NMR relaxivity of Ln3+-based zeolite-type materials , 2005 .

[39]  Frequency dependence of MR relaxation times I. Paramagnetic ions , 1993, Journal of magnetic resonance imaging : JMRI.

[40]  V. Runge,et al.  Update: Safety, New Applications, New MR Agents , 1995, Topics in magnetic resonance imaging : TMRI.

[41]  A. Ericsson,et al.  Myocardial Cell Death in Reperfused and Nonreperfused Myocardial Infarctions , 1996 .

[42]  J. Colet,et al.  Investigation of lanthanide‐based starch particles as a model system for liver contrast agents , 1999, Journal of magnetic resonance imaging : JMRI.

[43]  V. Runge,et al.  Choice of metal ion and formulation concentration for first-pass brain perfusion studies with magnetic resonance imaging at 1.5 tesla. , 1996, Investigative radiology.

[44]  P. V. van Rijk,et al.  Targeting of liver tumour in rats by selective delivery of holmium-166 loaded microspheres: a biodistribution study , 2001, European Journal of Nuclear Medicine.

[45]  C. Higgins,et al.  Comparison of cardiovascular response to ionic and nonionic magnetic resonance susceptibility contrast agents. , 1994, Investigative radiology.

[46]  R M Henkelman,et al.  Transverse relaxation rate enhancement caused by magnetic particulates. , 1989, Magnetic resonance imaging.

[47]  S. H. Koenig,et al.  Magnetic field dependence of solvent proton relaxation by solute dysprosium (III) complexes. , 1998, Investigative radiology.

[48]  P. V. van Rijk,et al.  Holmium-166 poly lactic acid microspheres applicable for intra-arterial radionuclide therapy of hepatic malignancies: effects of preparation and neutron activation techniques , 1999, European Journal of Nuclear Medicine.

[49]  W. Hennink,et al.  Neutron activation of holmium poly(L-lactic acid) microspheres for hepatic arterial radioembolization: a validation study , 2009, Biomedical microdevices.

[50]  S. Nilsson,et al.  Double-Contrast MR Imaging of Reperfused Porcine Myocardial Infarction , 1996, Acta radiologica.

[51]  P. Hermann,et al.  Gadolinium(III) complexes as MRI contrast agents: ligand design and properties of the complexes. , 2008, Dalton transactions.

[52]  Éva Tóth,et al.  The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging , 2013 .

[53]  I. Solomon Relaxation Processes in a System of Two Spins , 1955 .

[54]  Robert J. S. Brown,et al.  Distribution of Fields from Randomly Placed Dipoles: Free-Precession Signal Decay as Result of Magnetic Grains , 1961 .

[55]  G. Nicastro,et al.  Water proton relaxation for some lanthanide aqua ions in solution , 1993 .

[56]  J. Seppenwoolde,et al.  Lanthanide-loaded liposomes for multimodality imaging and therapy. , 2006, Cancer biotherapy & radiopharmaceuticals.

[57]  A Dean Sherry,et al.  Advantages of macromolecular to nanosized chemical-exchange saturation transfer agents for MRI applications. , 2010, Future medicinal chemistry.

[58]  Matthias Stuber,et al.  Positive contrast visualization of iron oxide‐labeled stem cells using inversion‐recovery with ON‐resonant water suppression (IRON) , 2007, Magnetic resonance in medicine.

[59]  Joop A. Peters,et al.  Determination of paramagnetic lanthanide(III) concentrations from bulk magnetic susceptibility shifts in NMR spectra , 2001 .

[60]  P. Anelli,et al.  NMR Evidence of a Long Exchange Lifetime for the Coordinated Water in Ln(III)-Bis(methyl amide)-DTPA Complexes (Ln = Gd, Dy) , 1994 .

[61]  C. Robic,et al.  Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. , 2008, Chemical reviews.

[62]  John M Pauly,et al.  Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles , 2005, Magnetic resonance in medicine.

[63]  Maythem Saeed,et al.  Reperfused myocardial infarctions on T1‐ and susceptibility‐enhanced MRI: Evidence for loss of compartmentalization of contrast media , 1994, Magnetic resonance in medicine.

[64]  J C Gore,et al.  On the relative importance of paramagnetic relaxation and diffusion‐mediated susceptibility losses in tissues , 1991, Magnetic resonance in medicine.

[65]  Debiao Li,et al.  Generating positive contrast from off-resonant spins with steady-state free precession magnetic resonance imaging: theory and proof-of-principle experiments , 2006, Physics in medicine and biology.

[66]  S. Laurent,et al.  Dy-complexes as high field T2 contrast agents: influence of water exchange rates. , 2002, Academic radiology.

[67]  K. Hellwege,et al.  Kollektiver Magnetismus von Ho2O3 im Temperaturbereich von 1,1 bis 4,2°K , 1966 .

[68]  Alastair J. Martin,et al.  Steady‐state imaging for visualization of endovascular interventions , 2003, Magnetic resonance in medicine.

[69]  G. Radda,et al.  Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. , 1982, Biochimica et biophysica acta.

[70]  Nicolaas Bloembergen,et al.  Proton Relaxation Times in Paramagnetic Solutions. Effects of Electron Spin Relaxation , 1961 .

[71]  R. Brasch New directions in the development of MR imaging contrast media. , 1992, Radiology.

[72]  C. Higgins,et al.  Effect of magnetic susceptibility contrast medium on myocardial signal intensity with fast gradient-recalled echo and spin-echo MR imaging: initial experience in humans. , 1994, Radiology.

[73]  I. Parkin,et al.  A convenient low temperature route to the formation of lanthanide oxides , 1993 .

[74]  Chris J G Bakker,et al.  Internal radiation therapy of liver tumors: Qualitative and quantitative magnetic resonance imaging of the biodistribution of holmium‐loaded microspheres in animal models , 2005, Magnetic resonance in medicine.

[75]  Jinming Gao,et al.  In vivo off-resonance saturation magnetic resonance imaging of alphavbeta3-targeted superparamagnetic nanoparticles. , 2009, Cancer research.

[76]  A. Fahlvik,et al.  Low-molecular weight lanthanide contrast agents: evaluation of susceptibility and dipolar effects in red blood cell suspensions. , 1997, Magnetic resonance imaging.

[77]  D Revel,et al.  Myocardial “low reflow” assessed by Dy‐DTPA‐BMA‐enhanced first‐pass MR imaging in a dog model , 1999, Journal of magnetic resonance imaging : JMRI.

[78]  Max A Viergever,et al.  Passive tracking exploiting local signal conservation: The white marker phenomenon , 2003, Magnetic resonance in medicine.

[79]  D. Saloner,et al.  MRI in guiding and assessing intramyocardial therapy , 2005, European Radiology.

[80]  Enzo Terreno,et al.  Ln(III)-DOTAMGly Complexes: A Versatile Series to Assess the Determinants of the Efficacy of Paramagnetic Chemical Exchange Saturation Transfer Agents for Magnetic Resonance Imaging Applications , 2004, Investigative radiology.

[81]  A. Roch,et al.  Transverse relaxivity of particulate MRI contrast media: From theories to experiments , 1991, Magnetic resonance in medicine.

[82]  A. D. Watson The use of gadolinium and dysprosium chelate complexes as contrast agents for magnetic resonance imaging , 1994 .

[83]  A. Ericsson,et al.  Combination of Gadolinium and Dysprosium Chelates as a Cellular Integrity Marker in MR Imaging , 1995, Acta radiologica.

[84]  J. Dobson,et al.  Nanomedicine for targeted drug delivery , 2009 .

[85]  J. Kucharczyk,et al.  Diffusion/perfusion MR imaging of acute cerebral ischemia , 1991, Magnetic resonance in medicine.

[86]  Kevin M. Johnson,et al.  Intravascular susceptibility agent effects on tissue transverse relaxation rates in vivo , 2000, Magnetic resonance in medicine.

[87]  F. Godtliebsen,et al.  Combined perfusion and diffusion-weighted magnetic resonance imaging in a rat model of reversible middle cerebral artery occlusion. , 1995, Stroke.

[88]  Nicolaas Bloembergen,et al.  Proton Relaxation Times in Paramagnetic Solutions , 1957 .

[89]  J. Kucharczyk,et al.  Early detection of perfusion deficits caused by regional cerebral ischemia in cats. T2-weighted magnetic susceptibility MRI using a nonionic dysprosium contrast agent. , 1990, Investigative radiology.

[90]  A. J. Vega,et al.  Nuclear relaxation processes of paramagnetic complexes The slow-motion case , 1976 .

[91]  J. Thiran,et al.  Detection of reperfused ischemia of the rat intestine: value of magnetic resonance imaging with small-molecular-weight dysprosium and gadolinium chelates. , 1997, Academic radiology.

[92]  A. Ericsson,et al.  Contrast agents in acute myocardial infarction , 2001, Magnetic Resonance Materials in Physics, Biology and Medicine.

[93]  F. Rossotti,et al.  Electron relaxation rates of lanthanide aquo-cations , 1980 .

[94]  G. Krijger,et al.  The bright future of radionuclides for cancer therapy. , 2007, Anti-cancer agents in medicinal chemistry.

[95]  J. Dieleman,et al.  Unilateral intracarotid injection of holmium microspheres to induce bilateral MRI-validated cerebral embolization in rats , 2009, Journal of Neuroscience Methods.

[96]  Black blood magnetic resonance angiography with Dy‐DTPA polymer: Effect on arterial intraluminal signal intensity, lumen diameter, and wall thickness , 1998, Journal of magnetic resonance imaging : JMRI.

[97]  J. Neuerburg,et al.  Kavafilterimplantation unter MRT-Kontrolle: Experimentelle In vitro- und In vivo-Untersuchungen , 1997 .

[98]  J. Gore,et al.  Measurements of transient contrast enhancement by localized water NMR spectroscopy. , 1994, Journal of magnetic resonance. Series B.

[99]  Anders Ericsson,et al.  MR Imaging of Double-Contrast Enhanced Porcine Myocardial Infarction , 1995, Acta radiologica.

[100]  P. V. van Rijk,et al.  Production of GMP-grade radioactive holmium loaded poly(L-lactic acid) microspheres for clinical application. , 2006, International journal of pharmaceutics.

[101]  Enzo Terreno,et al.  Challenges for molecular magnetic resonance imaging. , 2010, Chemical reviews.

[102]  B. Rosen,et al.  Perfusion imaging with NMR contrast agents , 1990, Magnetic resonance in medicine.

[103]  C. Higgins,et al.  MR imaging in assessing cardiovascular interventions and myocardial injury. , 2007, Contrast media & molecular imaging.

[104]  B R Rosen,et al.  Imaging perfusion deficits in ischemic heart disease with susceptibility-enhanced T2-weighted MRI: preliminary human studies. , 1998, Magnetic resonance imaging.

[105]  J. Seppenwoolde,et al.  Clinical effects of transcatheter hepatic arterial embolization with holmium-166 poly(l-lactic acid) microspheres in healthy pigs , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[106]  Klaas Nicolay,et al.  Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging. , 2009, Accounts of chemical research.

[107]  C. Swahn,et al.  Hydrothermal Preparation and Magnetic Properties of Dy2O2CO3, Ho2O2CO3, Er2O2CO3, and Yb2O2CO3. , 1973 .

[108]  S. Posse,et al.  Direct imaging of magnetic field gradients by group spin‐echoselection , 1992, Magnetic resonance in medicine.

[109]  R. Brooks,et al.  Dysprosium-DOTA-PAMAM dendrimers as macromolecular T2 contrast agents. Preparation and relaxometry. , 1998, Investigative radiology.

[110]  Enzo Terreno,et al.  Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. , 2005, Angewandte Chemie.

[111]  G. Mckinnon,et al.  Vascular interventions guided by ultrafast MR imaging: Evaluation of different materials , 1994, Magnetic resonance in medicine.

[112]  C. Springer,et al.  Bulk magnetic susceptibility shifts in nmr studies of compartmentalized samples: use of paramagnetic reagents , 1990, Magnetic resonance in medicine.

[113]  P. V. van Rijk,et al.  Influence of neutron irradiation on holmium acetylacetonate loaded poly(L-lactic acid) microspheres. , 2002, Biomaterials.

[114]  Application of MRI phase-difference mapping to assessment of vascular concentrations of BMS agent in mice. , 2008, Contrast media & molecular imaging.

[115]  E. Terreno,et al.  Determination of water permeability of paramagnetic liposomes of interest in MRI field. , 2008, Journal of inorganic biochemistry.

[116]  A. Ericsson,et al.  Double-contrast enhanced MR imaging of myocardial infarction in the pig. , 1993, Acta radiologica.

[117]  E M Haacke,et al.  An MRI method for measuring T2 in the presence of static and RF magnetic field Inhomogeneities , 1997, Magnetic resonance in medicine.

[118]  Peter R Seevinck,et al.  Factors affecting the sensitivity and detection limits of MRI, CT, and SPECT for multimodal diagnostic and therapeutic agents. , 2007, Anti-cancer agents in medicinal chemistry.

[119]  P. Slootweg,et al.  Intra-arterial embolization of head-and-neck cancer with radioactive holmium-166 poly(L-lactic acid) microspheres: an experimental study in rabbits. , 2001, International journal of oral and maxillofacial surgery.

[120]  R Weissleder,et al.  Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide. , 2000, Bioconjugate chemistry.

[121]  Antonia Denkova,et al.  NMR Transversal Relaxivity of Suspensions of Lanthanide Oxide Nanoparticles , 2007 .

[122]  Kevin M. Johnson,et al.  Dysprosium‐bearing red cells as potential transverse relaxation agents for MRI , 2001, Magnetic resonance in medicine.

[123]  A Dean Sherry,et al.  Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. , 2008, Annual review of biomedical engineering.

[124]  C. Robic,et al.  Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review , 2008, BioMetals.

[125]  Joop A. Peters,et al.  (1)H relaxivity of water in aqueous suspensions of Gd(3+)-loaded NaY nanozeolites and AlTUD-1 mesoporous material: the influence of Si/Al ratio and pore size. , 2007, Inorganic chemistry.

[126]  L. Wilson,et al.  Nanotechnology and MRI contrast enhancement. , 2010, Future medicinal chemistry.

[127]  R S Balaban,et al.  A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). , 2000, Journal of magnetic resonance.

[128]  Z. Fayad,et al.  Feasibility of in vivo identification of endogenous ferritin with positive contrast MRI in rabbit carotid crush injury using GRASP , 2006, Magnetic resonance in medicine.

[129]  S. H. Koenig Solvent relaxation by uniformly magnetized solute spheres. The classical-quantal connection. , 1998, Investigative radiology.

[130]  Olav Haraldseth,et al.  Comparison of dysprosium DTPA BMA and superparamagnetic iron oxide particles as susceptibility contrast agents for perfusion imaging of regional cerebral ischemia in the rat , 1996, Journal of magnetic resonance imaging : JMRI.

[131]  L. Helm Relaxivity in paramagnetic systems: Theory and mechanisms , 2006 .

[132]  T. J. Swift,et al.  NMR‐Relaxation Mechanisms of O17 in Aqueous Solutions of Paramagnetic Cations and the Lifetime of Water Molecules in the First Coordination Sphere , 1962 .

[133]  K. Watkin,et al.  Investigations into the physicochemical properties of dextran small particulate gadolinium oxide nanoparticles. , 2006, Academic radiology.

[134]  Wim E Hennink,et al.  Long-term toxicity of holmium-loaded poly(L-lactic acid) microspheres in rats. , 2007, Biomaterials.

[135]  Peter R Seevinck,et al.  FID sampling superior to spin‐echo sampling for T  2* ‐based quantification of holmium‐loaded microspheres: Theory and experiment , 2008, Magnetic resonance in medicine.

[136]  J. Hendrikse,et al.  Phase gradient mapping as an aid in the analysis of object-induced and system-related phase perturbations in MRI. , 2008, Physics in medicine and biology.

[137]  Wei Liu,et al.  In vivo MRI using positive‐contrast techniques in detection of cells labeled with superparamagnetic iron oxide nanoparticles , 2008, NMR in biomedicine.

[138]  E. Terreno,et al.  Lanthanide-loaded paramagnetic liposomes as switchable magnetically oriented nanovesicles. , 2008, Inorganic chemistry.

[139]  P. V. van Rijk,et al.  Advances in nuclear oncology: microspheres for internal radionuclide therapy of liver tumours. , 2002, Current medicinal chemistry.

[140]  Measurement of magnetic susceptibility and MR contrast agent concentration. , 1994, Magnetic resonance imaging.

[141]  Erik Kampert,et al.  Tuning of the size of Dy2O3 nanoparticles for optimal performance as an MRI contrast agent. , 2008, Journal of the American Chemical Society.

[142]  Klaas Nicolay,et al.  Lipid‐based nanoparticles for contrast‐enhanced MRI and molecular imaging , 2006, NMR in biomedicine.

[143]  R. Lauffer,et al.  Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. , 1997, Investigative radiology.

[144]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.

[145]  B R Rosen,et al.  Assessment of myocardial ischemia with proton magnetic resonance: effects of a three hour coronary occlusion with and without reperfusion. , 1985, Circulation.

[146]  M. A. van den Bosch,et al.  Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial , 2010, Journal of experimental & clinical cancer research : CR.

[147]  M. Moseley,et al.  Improved sensitivity to magnetic susceptibility contrast , 1993, Magnetic resonance in medicine.

[148]  R. Brooks,et al.  On T2‐shortening by strongly magnetized spheres: A partial refocusing model , 2002, Magnetic resonance in medicine.

[149]  Joop A. Peters,et al.  Zeolite GdNaY nanoparticles with very high relaxivity for application as contrast agents in magnetic resonance imaging. , 2002, Chemistry.

[150]  C. Higgins,et al.  Reversible and irreversible injury in the reperfused myocardium: differentiation with contrast material-enhanced MR imaging. , 1990, Radiology.

[151]  S. Nilsson MR imaging of contrast-enhanced porcine myocardial infarction. Assessment of reperfusion and tissue viability. , 1995, Acta radiologica. Supplementum.

[152]  G. Zaharchuk,et al.  Delivery of imaging agents into brain. , 1999, Advanced drug delivery reviews.

[153]  W. Hennink,et al.  Characterization of holmium loaded alginate microspheres for multimodality imaging and therapeutic applications. , 2007, Journal of biomedical materials research. Part A.

[154]  R. Muller,et al.  Synergistic effects of relaxation and susceptibility in differentiation between compartmentalized and noncompartmentalized tissues. , 1998, Investigative radiology.

[155]  M A Viergever,et al.  MR-guided endovascular interventions: susceptibility-based catheter and near-real-time imaging technique. , 1997, Radiology.

[156]  Xiaoping Hu,et al.  Off‐resonance saturation as a means of generating contrast with superparamagnetic nanoparticles , 2006, Magnetic resonance in medicine.

[157]  Enzo Terreno,et al.  From spherical to osmotically shrunken paramagnetic liposomes: an improved generation of LIPOCEST MRI agents with highly shifted water protons. , 2007, Angewandte Chemie.

[158]  R. Bryant,et al.  Lanthanide chelates as bilayer alignment tools in NMR studies of membrane-associated peptides. , 1999, Journal of magnetic resonance.

[159]  Q. Vuong,et al.  Physico-chemical and NMR relaxometric characterization of gadolinium hydroxide and dysprosium oxide nanoparticles , 2008, Nanotechnology.

[160]  Delineation of liver necrosis using double contrast‐enhanced MRI , 1997, Journal of magnetic resonance imaging : JMRI.

[161]  L. Tei,et al.  Paramagnetic Liposomes as Innovative Contrast Agents for Magnetic Resonance (MR) Molecular Imaging Applications , 2008, Chemistry and Biodiversity.

[162]  A. van der Bilt,et al.  Tumour embolization of the Vx2 rabbit head and neck cancer model with Dextran hydrogel and Holmium-poly(L-lactic acid) microspheres: a radionuclide and histological pilot study. , 2001, Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery.

[163]  Eliana Gianolio,et al.  Insights into the use of paramagnetic Gd(III) complexes in MR‐molecular imaging investigations , 2002, Journal of magnetic resonance imaging : JMRI.

[164]  David Saloner,et al.  MR guidance of targeted injections into border and core of scarred myocardium in pigs. , 2006, Radiology.

[165]  M E Moseley,et al.  Echo-planar perfusion-sensitive MR imaging of acute cerebral ischemia. , 1993, Radiology.

[166]  J. Jensen,et al.  NMR relaxation in tissues with weak magnetic inhomogeneities , 2000, Magnetic resonance in medicine.

[167]  C. Johansson,et al.  Lanthanide‐based susceptibility contrast agents: Assessment of the magnetic properties , 1996, Magnetic resonance in medicine.

[168]  A. Fahlvik,et al.  Low molecular weight lanthanide contrast agents: In vitro studies of mechanisms of action , 1997, Journal of magnetic resonance imaging : JMRI.

[169]  P. V. van Rijk,et al.  Characterization of poly(L-lactic acid) microspheres loaded with holmium acetylacetonate. , 2001, Biomaterials.

[170]  K. Schulten,et al.  Theory of contrast agents in magnetic resonance imaging: Coupling of spin relaxation and transport , 1992, Magnetic resonance in medicine.

[171]  C B Higgins,et al.  First pass of an MR susceptibility contrast agent through normal and ischemic heart: Gradient‐recalled echo‐planar imaging , 1993, Journal of magnetic resonance imaging : JMRI.

[172]  S B Fain,et al.  Optimizing dynamic T2* MR imaging for measurement of cerebral blood flow using infusions for cerebral blood volume. , 2006, AJNR. American journal of neuroradiology.

[173]  H. Shinohara,et al.  Lanthanoid endohedral metallofullerenols for MRI contrast agents. , 2003, Journal of the American Chemical Society.

[174]  J. Jensen,et al.  Strong field behavior of the NMR signal from magnetically heterogeneous tissues , 2000, Magnetic Resonance in Medicine.

[175]  L. Helm,et al.  Oxygen-17 NMR study of water exchange on gadolinium polyaminopolyacetates [Gd(DTPA)(H2O)]2- and [Gd(DOTA)(H2O)]- related to NMR imaging , 1993 .

[176]  D. Flood High-field magnetization of Dy2O3 , 1974 .

[177]  J. Freed Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. II. Finite jumps and independent T1 processes , 1978 .

[178]  Freek J Beekman,et al.  Hybrid scatter correction applied to quantitative holmium-166 SPECT , 2006, Physics in medicine and biology.

[179]  K. Hellwege,et al.  Antiferromagnetische Umwandlung von Dy2O3, Er2O3 und Yb2O3 im Temperaturbereich von 1,1 bis 4,2°K , 1966 .

[180]  Yan Xu,et al.  Magnetic susceptibility shift selected imaging: MESSI , 1990, Magnetic resonance in medicine.

[181]  J. Nijsen,et al.  Radionuclide liver cancer therapies: from concept to current clinical status. , 2007, Anti-cancer agents in medicinal chemistry.

[182]  B. Rosen,et al.  Microscopic susceptibility variation and transverse relaxation: Theory and experiment , 1994, Magnetic resonance in medicine.

[183]  P. Perriat,et al.  Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. , 2007, Journal of the American Chemical Society.

[184]  M. A. van den Bosch,et al.  Holmium-166 poly(L-lactic acid) microsphere radioembolisation of the liver: technical aspects studied in a large animal model , 2009, European Radiology.

[185]  Joop A. Peters,et al.  Gadolinium(III)-loaded nanoparticulate zeolites as potential high-field MRI contrast agents: relationship between structure and relaxivity. , 2005, Chemistry.

[186]  C. Higgins,et al.  Contrast media for cardiothoracic MR imaging , 1993, Journal of magnetic resonance imaging : JMRI.

[187]  Peter Caravan,et al.  Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. , 2006, Chemical Society reviews.

[188]  C B Higgins,et al.  Comparison of T1-Enhancing and Magnetic Susceptibility Magnetic Resonance Contrast Agents for Demarcation of the Jeopardy Area in Experimental Myocardial Infarction , 1993, Investigative radiology.

[189]  Eva Forssell-Aronsson,et al.  Radiolanthanides in nuclear medicine. , 2004, Metal ions in biological systems.

[190]  Chris J G Bakker,et al.  Liver tumors: MR imaging of radioactive holmium microspheres--phantom and rabbit study. , 2004, Radiology.

[191]  Chris J G Bakker,et al.  Fully MR‐guided hepatic artery catheterization for selective drug delivery: A feasibility study in pigs , 2006, Journal of magnetic resonance imaging : JMRI.

[192]  M A Viergever,et al.  Visualization of dedicated catheters using fast scanning techniques with potential for MR‐guided vascular interventions , 1996, Magnetic resonance in medicine.