The transport and optical sensing properties of MoS2, MoSe2, WS2 and WSe2 semiconducting transition metal dichalcogenides

In this paper, we investigate the transport and optical properties of the monolayer semiconducting transition metal dichalcogenides (STMDs) in the absence and presence of the NH3, NO, NO2, and O2 gas molecules to assess their potentials as gas sensors. The first-principles calculations based on density functional theory indicate that absorption of the O2, NO2, NO gas molecules on the surface of these materials leads to significant changes in their transmission spectrum. Our calculations predict a charge transfer between the adsorbent gas and any of these STMDs. However, the presence of NH3 molecule has little effect on the transport properties of these materials. The results show that when the STMDs are exposed to NO, NO2, and O2 molecules, the dielectric function changes. Therefore, these materials can be employed as the sensing element in an optical gas sensor.

[1]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[2]  Ming-Yang Li,et al.  Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry , 2014 .

[3]  Fengnian Xia,et al.  Recent Advances in Two-Dimensional Materials beyond Graphene. , 2015, ACS nano.

[4]  M. Fathipour,et al.  Behavior of the dielectric function of monolayer $$\hbox {MoS}_{2}$$MoS2 under Uniaxial Strain , 2016 .

[5]  A. Shokri,et al.  Gas sensor based on MoS2 monolayer , 2016 .

[6]  Christopher M. Smyth,et al.  Intrinsic air stability mechanisms of two-dimensional transition metal dichalcogenide surfaces: basal versus edge oxidation , 2017 .

[7]  Jahyun Koo,et al.  Improvement of Gas-Sensing Performance of Large-Area Tungsten Disulfide Nanosheets by Surface Functionalization. , 2016, ACS nano.

[8]  Aaron M. Lindenberg,et al.  2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications , 2016 .

[9]  M. Fathipour,et al.  The effect of uniaxial strain on the optical properties of monolayer molybdenum disulfide , 2016 .

[10]  Su-Huai Wei,et al.  Gas sensing in 2D materials , 2017 .

[11]  Ho Won Jang,et al.  Two-Dimensional Transition Metal Disulfides for Chemoresistive Gas Sensing: Perspective and Challenges , 2017 .

[12]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[13]  R. Tatam,et al.  Optical gas sensing: a review , 2012 .

[14]  K. K. Singh,et al.  Two-Dimensional Materials for Sensing: Graphene and Beyond , 2015 .

[15]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[16]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[17]  Naoki Harada,et al.  Computational study on electrical properties of transition metal dichalcogenide field-effect transistors with strained channel , 2014 .

[18]  S. Funke,et al.  Imaging spectroscopic ellipsometry of MoS2 , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Arkady V. Krasheninnikov,et al.  Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles , 2013, 1308.5061.

[20]  Deji Akinwande,et al.  Recent development of two-dimensional transition metal dichalcogenides and their applications , 2017 .

[21]  R. Wallace,et al.  Surface oxidation energetics and kinetics on MoS2 monolayer , 2015 .

[22]  G. Duesberg,et al.  Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry , 2014 .

[23]  E. Llobet Gas sensors using carbon nanomaterials: A review , 2013 .

[24]  Yi Cui,et al.  Physical and chemical tuning of two-dimensional transition metal dichalcogenides. , 2015, Chemical Society reviews.