Bispecial Factors in the Brun S-Adic System
暂无分享,去创建一个
[1] Fabien Durand,et al. Corrigendum and addendum to ‘Linearly recurrent subshifts have a finite number of non-periodic factors’ , 2003, Ergodic Theory and Dynamical Systems.
[2] Vincent Delecroix,et al. Balancedness of Arnoux-Rauzy and Brun Words , 2013, WORDS.
[3] Gérard Rauzy,et al. Représentation géométrique de suites de complexité $2n+1$ , 1991 .
[4] Karel Klouda,et al. Bispecial factors in circular non-pushy D0L languages , 2012, Theor. Comput. Sci..
[5] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[6] Jérémie Bourdon,et al. A combinatorial approach to products of Pisot substitutions , 2014, Ergodic Theory and Dynamical Systems.
[7] A. Brentjes,et al. A two-dimensional continued fraction algorithm for best approximations with an application in cubic number fields. , 1981 .
[8] Valérie Berthé,et al. On the Pisot Substitution Conjecture , 2015 .
[9] B. R. Schratzberger,et al. The Quality of Approximation of Brun’s Algorithm in Three Dimensions , 2001 .
[10] Valérie Berthé. Combinatorics , Automata and Number Theory , 2011 .
[11] Valérie Berthé,et al. Factor Complexity of S-adic sequences generated by the Arnoux-Rauzy-Poincaré Algorithm , 2014, Adv. Appl. Math..
[12] Jeffrey C. Lagarias,et al. The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms , 1993 .
[13] Fritz Schweiger,et al. Multidimensional continued fractions , 2000 .
[14] Wolfgang Steiner,et al. Geometry, dynamics, and arithmetic of $S$-adic shifts , 2014, Annales de l'Institut Fourier.
[15] G. Rauzy. Nombres algébriques et substitutions , 1982 .