Nature and P-T Conditions of the Crust Beneath the Central Mexican Volcanic Belt Based on a Precambrian Crustal Xenolith

A granulite xenolith was encountered in an ignimbrite of Amealco caldera, México. This sample is one of three granulite occurrences in the central Mexican Volcanic Belt. It is a medium-grained, equigranular rock, with plagioclase (60 vol%), quartz (10%), orthopyroxene (8%), clinopyroxene (2%), accessory ilmenite (<1%), apatite and zircon (both <1%), and glass (20%). The glass represents partial fusion, probably due to decompression. Absence of alumina-rich phases or graphite indicates an igneous protolith. Isotope values of 143Nd/144Nd = 0.512681 ± 16 (Nd = +0.84) and 87Sr/86Sr = 0.705874 ± 39 confirm a volcanic arc tectonic setting. The granulite yielded a model age of 683 Ma. Whole-rock chemistry indicates a dacite composition. REE patterns show a positive Eu anomaly with a general negative slope from La to Lu, and HFSE such as Nb are relatively depleted, as expected for subduction-generated magmas. Fluid inclusion (FI) studies performed mainly on feldspars revealed four FI types. Type 1 is represented by very rare FI composed of CO2 ± water. Other types (2, 3, and 4) are essentially composed of CO2. Type 2 comprises large (up to 60 μm) FI, whereas type 3 FI are distributed along planes crosscutting the crystal (quartz and feldspar). Type 4 are complex low-maturity FI surrounding type 3 FI. Densities in type 3 FI are between 0.07 and 0.75 g/cm3. This scattering is interpreted as being due to decrepitation of FI during the decompression stage of the sample. Using the highest recorded densities, maximum trapping pressure was estimated at 2.9 to 3.2 kbar, assuming a temperature of 800-900°C, corresponding to a lower to upper crust pressure (5−10 km depth) following the decompression stage. A granulitic basement of arc affinity and Precambrian age is inferred at depths of >5 km beneath Amealco caldera. A fragment of this basement was incorporated into an ascending pulse of mafic magma that was injected into the relatively shallow magma chamber of Amealco caldera, and was erupted together with voluminous pyroclastic flows.

[1]  G. Aguirre-Díaz Recurrent magma mingling in successive ignimbrites from Amealco caldera, central Mexico , 2001 .

[2]  J. Touret Fluids in metamorphic rocks , 2001 .

[3]  Joseph N. Moore,et al.  The Fluid Inclusion and Mineralogic Record of the Transition from Liquid- to Vapor-Dominated Conditions in The Geysers Geothermal System, California , 2000 .

[4]  P. Schaaf,et al.  Pre-Miocene palaeogeography of the Los Cabos Block, Baja California Sur: geochronological and palaeomagnetic constraints , 2000 .

[5]  J. Urrutia‐Fucugauchi,et al.  Stratigraphy, K-Ar ages, and magnetostratigraphy of the Acambay graben, central Mexican Volcanic Belt , 2000 .

[6]  S. Verma Geochemistry of the subducting Cocos plate and the origin of subduction-unrelated mafic volcanism at the volcanic front of the central Mexican Volcanic Belt , 2000 .

[7]  G. Aguirre-Díaz,et al.  Volcanic evolution of the Amealco caldera, central Mexico , 2000 .

[8]  J. Urrutia‐Fucugauchi,et al.  Lower-Crustal Xenoliths from the Valle de Santiago Maar Field, Michoacan-Guanajuato Volcanic Field, Central Mexico , 1999 .

[9]  P. Wallace,et al.  Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions , 1999 .

[10]  J. Keppie,et al.  Middle American Precambrian basement: A missing piece of the reconstructed 1-Ga orogen , 1999 .

[11]  E. Centeno-Garcia,et al.  Review of Paleozoic stratigraphy of México and its role in the Gondwana-Laurentia connections , 1999 .

[12]  S. Verma,et al.  Alkalic (ocean-island basalt type) and calc-alkalic volcanism in the Mexican volcanic belt: A case for plume-related magmatism and propagating rifting at an active margin? , 1999 .

[13]  L. Ferrari,et al.  Alkalic ( ocean-island basalt type ) and calc-alkalic volcanism in the Mexican volcanic belt : A case for plume-related magmatism and propagating rifting at an active margin ? : Comment and Reply , 1999 .

[14]  Z. Kotelnikova,et al.  Fluid inclusions in rocks from the Central Kola granulite area (Baltic Shield) , 1998 .

[15]  I. Carmichael,et al.  Hornblende peridotite xenoliths from central Mexico reveal the highly oxidized nature of subarc upper mantle , 1998 .

[16]  J. Luhr,et al.  Mexican Peridotite Xenoliths and Tectonic Terranes: Correlations among Vent Location, Texture, Temperature, Pressure, and Oxygen Fugacity , 1997 .

[17]  G. Díaz Volcanic stratigraphy of the Amealco Caldera and vicinity, central Mexican volcanic belt , 1996 .

[18]  J. Urrutia‐Fucugauchi,et al.  Bouguer Gravity Anomalies and Regional Crustal Structure in Central Mexico , 1996 .

[19]  Mauro Hernández,et al.  Una localidad nueva de la Formación Matzitzi en el río Calapa, límite estatal de Oaxaca y Puebla, México , 1996 .

[20]  P. Schaaf,et al.  Paleogene continental margin truncation in southwestern Mexico: Geochronological evidence , 1995 .

[21]  E. Centeno-Garcia,et al.  Oaxaquia, a Proterozoic microcontinent accreted to North America during the late Paleozoic , 1995 .

[22]  J. Keppie,et al.  Provenance of Mexican Terranes: Isotopic Constraints , 1995 .

[23]  W. Heinrich,et al.  Composition and SmNd isotopic data of the lower crust beneath San Luis Potosí, central Mexico: Evidence from a granulite-facies xenolith suite , 1994 .

[24]  J. Urrutia‐Fucugauchi,et al.  Deep crustal structure of central Mexico derived from interpretation of Bouguer gravity anomaly data , 1993 .

[25]  F. Ortega-Gutiérrez,et al.  Tectonostratigraphic terranes and tectonic evolution of Mexico , 1993 .

[26]  G. J. Nimz,et al.  Contrasting styles of Pre‐Cenozoic and Mid‐Tertiary crustal evolution in northern Mexico: Evidence from deep crustal xenoliths from La olivina , 1992 .

[27]  B. Evans,et al.  Decrepitation and crack healing of fluid inclusions in San Carlos olivine , 1990 .

[28]  A. V. D. Kerkhof,et al.  A natural example of superdense CO2 inclusions: Microthermometry and Raman analysis , 1990 .

[29]  J. Urrutia‐Fucugauchi,et al.  Basement, Curie isotherm and shallow-crustal structure of the Trans-Mexican Volcanic Belt, from aeromagnetic data , 1990 .

[30]  A. Hall Igneous Petrogenesis: A Global Tectonic Approach , 1989, Mineralogical Magazine.

[31]  J. Ruíz,et al.  Geochemistry of exposed granulite facies terrains and lower crustal xenoliths in Mexico , 1989 .

[32]  B. Wilson,et al.  Igneous Petrogenesis a Global Tectonic Approach , 1989 .

[33]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[34]  P. J. Patchett,et al.  Proterozoic and Phanerozoic basement terranes of Mexico from Nd isotopic studies , 1988 .

[35]  P. J. Patchett,et al.  Nd isotopic ages of crust formation and metamorphism in the Precambrian of eastern and southern Mexico , 1987 .

[36]  R. W. Le Maitre,et al.  A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram , 1986 .

[37]  R. C. Newton Fluids of Granulite Facies Metamorphism , 1986 .

[38]  S. Goldstein,et al.  A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems , 1984 .

[39]  T. Anderson,et al.  The evolution of Middle America and the Gulf of Mexico–Caribbean Sea region during Mesozoic time , 1983 .

[40]  M. F. Campa,et al.  Tectono-stratigraphic terranes and mineral resource distributions in Mexico , 1983 .

[41]  J. Coolen Carbonic fluid inclusions in granulites from Tanzania — A comparison of geobarometric methods based on fluid density and mineral chemistry , 1982 .

[42]  D. Kerrick,et al.  Methane: An equation of state with application to the ternary system H2O-CO2-CH4 , 1981 .

[43]  H. E. C. Swanenberg Fluid inclusions in high-grade metamorphic rocks from S.W. Norway , 1980 .

[44]  L. Hollister,et al.  Phase equilibria in fluid inclusions from the Khtada Lake metamorphic complex , 1976 .

[45]  L. Shapiro Rapid analysis of silicate, carbonate, and phosphate rocks , 1975 .

[46]  R. Oviedo,et al.  La Secuencia Mesozoica Volcanica-Sedimentaria Metamorfizada de Ixtapan de la Sal, México-Teloloapan, Gro. , 1974 .

[47]  J. Touret Le facies granulite en norvege meridionale: I. Les associations minéralogiques , 1971 .

[48]  J. Maxwell,et al.  Rock and mineral analysis , 1968 .

[49]  H. Winkler,et al.  Petrogenesis of metamorphic rocks , 1965 .

[50]  O. F. Tuttle,et al.  Chemistry of igneous rocks--[Part] 1, Differentiation index , 1960 .

[51]  C. E. Tilley Differentiation of Hawaiian Basalts: Some Variants in Lava Suites of Dated Kilauean Eruptions , 1960 .

[52]  P. A. S.,et al.  Rocks and Rock Minerals , 1949, Nature.

[53]  Louis V. Pirsson,et al.  Rocks and rock minerals , 1909 .