On the polynomial convergent formulation of a C0 isoparametric skew beam element

Abstract A finite element formulation of a skew line element is presented as an isoparametric skew beam based on Timoshenko's theory. The element is derived by introducing two radii of curvature having a ratio to the element length of up to one and employing a variable number of nodes for the polynomial convergence evaluation. Examples to illustrate the validity of this formulation and the possibility of practical applications are shown. Further developments are introduced. Better-Basic procedures are included in an Appendix.

[1]  Gangan Prathap,et al.  The curved beam/deep arch/finite ring element revisited , 1985 .

[2]  J. Barlow,et al.  Optimal stress locations in finite element models , 1976 .

[3]  J. Z. Zhu,et al.  The finite element method , 1977 .

[4]  W. S. Doyle,et al.  NONPRI: AN EFFECTIVE NON-PRISMATIC THREE DIMENSIONAL BEAM FINITE ELEMENT , 1981 .

[5]  K. C. Park,et al.  Improved strain interpolation for curvedC° elements , 1986 .

[6]  R. Palaninathan,et al.  Curved beam element stiffness matrix formulation , 1985 .

[7]  Gangan Prathap,et al.  Reduced integration and the shear-flexible beam element , 1982 .

[8]  Gangan Prathap,et al.  A linear thick curved beam element , 1986 .

[9]  R. Vitaliani,et al.  Direct determination of finite element local smoothing matrices , 1985 .

[10]  G. H. Ferguson,et al.  A variable thickness, curved beam and shell stiffening element with shear deformations , 1979 .

[11]  D. J. Dawe,et al.  Curved finite elements for the analysis of shallow and deep arches , 1974 .

[12]  T. Belytschko,et al.  Membrane Locking and Reduced Integration for Curved Elements , 1982 .

[13]  Ahmed K. Noor,et al.  Mixed models and reduced/selective integration displacement models for nonlinear analysis of curved beams , 1981 .

[14]  Ted Belytschko,et al.  On the equivalence of mode decomposition and mixed finite elements based on the Hellinger—Reissner principle: part I: theory , 1986 .

[15]  Gangan Prathap,et al.  An isoparametric quadratic thick curved beam element , 1986 .

[16]  Atef F. Saleeb,et al.  On the hybrid-mixed formulation of C 0 curved beam elements , 1987 .

[17]  J. Jirousek,et al.  A family of variable section curved beam and thick-shell or membrane-stiffening isoparametric elements , 1981 .

[18]  D. G. Ashwell,et al.  Finite elements for thin shells and curved members , 1976 .

[19]  John S. Campbell,et al.  Local and global smoothing of discontinuous finite element functions using a least squares method , 1974 .

[20]  N. Marshall,et al.  Curved beam elements to model noncircular coil shapes for tokamak reactor , 1985 .

[21]  Alexander Tessler,et al.  Curved beam elements with penalty relaxation , 1986 .

[22]  Gangan Prathap,et al.  An additional stiffness parameter measure of error of the second kind in the finite element method , 1985 .