Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control.

In this paper, a silicon nanowire biosensor with novel molecular gate control has been demonstrated for Deoxyribonucleic acid (DNA) detection related to dengue virus (DENV). The silicon nanowire was fabricated using the top-down nanolithography approach, through nanostructuring of silicon-on-insulator (SOI) layers achieved by combination of the electron-beam lithography (EBL), plasma dry etching and size reduction processes. The surface of the fabricated silicon nanowire was functionalized by means of a three-step procedure involving surface modification, DNA immobilization and hybridization. This procedure acts as a molecular gate control to establish the electrical detection for 27-mers base targets DENV DNA oligomer. The electrical detection is based on the changes in current, resistance and conductance of the sensor due to accumulation of negative charges added by the immobilized probe DNA and hybridized target DNA. The sensitivity of the silicon nanowire biosensors attained was 45.0µAM(-1), which shows a wide-range detection capability of the sensor with respect to DNA. The limit of detection (LOD) achieved was approximately 2.0fM. The demonstrated results show that the silicon nanowire has excellent properties for detection of DENV with outstanding repeatability and reproducibility performances.

[1]  Qi Zhang,et al.  CMOS-compatible, label-free silicon-nanowire biosensors to detect cardiac troponin I for acute myocardial infarction diagnosis. , 2012, Biosensors & bioelectronics.

[2]  Zhiqiang Gao,et al.  Silicon nanowire arrays for label-free detection of DNA. , 2007, Analytical chemistry.

[3]  Uda Hashim,et al.  The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor. , 2014, Materials science & engineering. C, Materials for biological applications.

[4]  U. Hashim,et al.  Surface modifications to boost sensitivities of electrochemical biosensors using gold nanoparticles/silicon nanowires and response surface methodology approach , 2015, Journal of Materials Science.

[5]  N Balasubramanian,et al.  Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors. , 2008, Biosensors & bioelectronics.

[6]  R. F. Dutra,et al.  A sensor tip based on carbon nanotube-ink printed electrode for the dengue virus NS1 protein. , 2013, Biosensors & bioelectronics.

[7]  A. R. Ruslinda,et al.  Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers. , 2015, Biosensors & bioelectronics.

[8]  Ulrich J Krull,et al.  Silicon nanowires as field-effect transducers for biosensor development: a review. , 2014, Analytica chimica acta.

[9]  Tijjani Adam,et al.  Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules. , 2015, Biosensors & bioelectronics.

[10]  Fabrication of Silicon Nanowires Array Using E-beam Lithography Integrated with Microfluidic Channel for pH Sensing , 2015 .

[11]  Fabrication of Silicon Nanowires by Electron Beam Lithography and Thermal Oxidation Size Reduction Method , 2013 .

[12]  Guo-Jun Zhang,et al.  Silicon nanowire biosensor and its applications in disease diagnostics: a review. , 2012, Analytica chimica acta.

[13]  U. Gösele,et al.  Growth, thermodynamics, and electrical properties of silicon nanowires. , 2010, Chemical reviews.

[14]  N. Yusof,et al.  The development of silicon nanowire as sensing material and its applications , 2013 .

[15]  A. Baeumner,et al.  Biosensor for dengue virus detection: sensitive, rapid, and serotype specific. , 2002, Analytical chemistry.

[16]  Yun Zhang,et al.  An electrochemical aptamer biosensor based on "gate-controlled" effect using β-cyclodextrin for ultra-sensitive detection of trace mercury. , 2015, Biosensors & bioelectronics.

[17]  U. Hashim,et al.  Top-Down Nanofabrication and Characterization of 20 nm Silicon Nanowires for Biosensing Applications , 2016, PloS one.

[18]  Shyamsunder Erramilli,et al.  Silicon-based nanoelectronic field-effect pH sensor with local gate control , 2006 .

[19]  E. Šturdı́k,et al.  Biosensors - classification, characterization and new trends , 2012 .

[20]  A. O'Neill,et al.  Top-down fabrication of single crystal silicon nanowire using optical lithography , 2012 .

[21]  Fan Yang,et al.  Silicon nanowire-transistor biosensor for study of molecule-molecule interactions , 2014 .

[22]  Kim-Kee Tan,et al.  Early Detection of Dengue Virus by Use of Reverse Transcription-Recombinase Polymerase Amplification , 2015, Journal of Clinical Microbiology.

[23]  Eric N. Dattoli,et al.  Tin oxide nanowire sensor with integrated temperature and gate control for multi-gas recognition. , 2012, Nanoscale.

[24]  M. Giese Micro- and Nanotechnology , 2016 .

[25]  G. Shalev,et al.  Specific and label-free femtomolar biomarker detection with an electrostatically formed nanowire biosensor , 2013 .

[26]  Yi-Chen Lu,et al.  A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus , 2009, Nanotechnology.

[27]  L. Kubota,et al.  Electrochemical detection of dengue virus NS1 protein with a poly(allylamine)/carbon nanotube layered immunoelectrode , 2015 .

[28]  Vishwanath Ramamurthi,et al.  Ultra-low contact resistance of epitaxially interfaced bridged silicon nanowires , 2007 .

[29]  I. Park,et al.  Top-down fabricated silicon nanowire sensors for real-time chemical detection , 2010, Nanotechnology.

[30]  Jin-Woo Han,et al.  Gold nanoparticle embedded silicon nanowire biosensor for applications of label-free DNA detection. , 2010, Biosensors & bioelectronics.

[31]  Walter Hu,et al.  Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect transistors. , 2011, Lab on a chip.

[32]  J. L. Lima-Filho,et al.  Trends in dengue diagnosis , 2005, Reviews in medical virology.

[33]  Gengfeng Zheng,et al.  Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species , 2006, Nature Protocols.

[34]  Ajay Agarwal,et al.  Label-free direct detection of MiRNAs with silicon nanowire biosensors. , 2009, Biosensors & bioelectronics.

[35]  Sook Mei Khor,et al.  An introduction to dengue-disease diagnostics , 2015 .

[36]  A. R. Ruslinda,et al.  High-performance integrated field-effect transistor-based sensors. , 2016, Analytica chimica acta.

[37]  Natália Oliveira,et al.  A Sensitive and Selective Label-Free Electrochemical DNA Biosensor for the Detection of Specific Dengue Virus Serotype 3 Sequences , 2015, Sensors.

[38]  Wolfgang B Fischer,et al.  Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor. , 2011, Analytical chemistry.

[39]  U. Hashim,et al.  Detection of specific single-stranded DNA molecules through SiNW surface modulation , 2016 .

[40]  Li Zhang,et al.  Serotype-specific identification of Dengue virus by silicon nanowire array biosensor. , 2013, Journal of nanoscience and nanotechnology.

[41]  Varun Rai,et al.  Ultrasensitive cDNA Detection of Dengue Virus RNA Using Electrochemical Nanoporous Membrane-Based Biosensor , 2012, PloS one.

[42]  Tzong-Zeng Wu,et al.  Piezoelectric immunochip for the detection of dengue fever in viremia phase. , 2005, Biosensors & bioelectronics.

[43]  C. A. Andrade,et al.  Detection of dengue virus serotypes on the surface of gold electrode based on Cratylia mollis lectin affinity , 2011 .

[44]  B. A. Fonseca,et al.  Dengue: a review of the laboratory tests a clinician must know to achieve a correct diagnosis. , 2004, The Brazilian journal of infectious diseases : an official publication of the Brazilian Society of Infectious Diseases.

[45]  Albert van den Berg,et al.  Top-down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication. , 2009, ACS nano.

[46]  E. Jacques,et al.  Step-gate polysilicon nanowires field effect transistor compatible with CMOS technology for label-free DNA biosensor. , 2013, Biosensors & bioelectronics.

[47]  Ajay Agarwal,et al.  Silicon nanowire sensor array using top–down CMOS technology , 2008 .

[48]  Charles M. Lieber,et al.  Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors , 2004 .

[49]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Tiao-Yuan Huang,et al.  Novel poly-silicon nanowire field effect transistor for biosensing application. , 2009, Biosensors & bioelectronics.

[51]  Li Zhang,et al.  Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus , 2010 .

[52]  K. L. Foo,et al.  Morphological, Structural, and Electrical Characterization of Sol-Gel-Synthesized ZnO Nanorods , 2013 .

[53]  Uda Hashim,et al.  A Novel Disposable Biosensor Based on SiNWs/AuNPs Modified-Screen Printed Electrode for Dengue Virus DNA Oligomer Detection , 2015, IEEE Sensors Journal.

[54]  Minho Lee,et al.  The label free DNA sensor using a silicon nanowire array. , 2012, Journal of biotechnology.

[55]  Yit‐Tsong Chen,et al.  Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation , 2011 .

[56]  Duane J. Gubler,et al.  Dengue and Dengue Hemorrhagic Fever , 1998, Clinical Microbiology Reviews.

[57]  Bor-Ran Li,et al.  Advances in nanowire transistors for biological analysis and cellular investigation. , 2014, The Analyst.

[58]  G. Pennelli,et al.  Surface roughness and electron backscattering in high aspect ratio silicon nanowires , 2011 .

[59]  S. Sekaran,et al.  New development in the diagnosis of dengue infections. , 2013, Expert opinion on medical diagnostics.

[60]  V. Zucolotto,et al.  Electrical Detection of Dengue Biomarker Using Egg Yolk Immunoglobulin as the Biological Recognition Element , 2015, Scientific Reports.