Vortex Particle Swarm Optimization

This paper presents an optimization algorithm based on self-propelled particle swarms which exploit vorticity features in order to avoid local minima; the proposed algorithm is termed Vortex Particle Swarm Optimization (VPSO). The optimization algorithm switches between translational and dispersion behavior of the swarm to enhance the exploration of the search space and to avoid getting trapped in local minima. These two types of behavior are induced by choosing the swarm as a collection of coupled, second-order oscillators where it is possible, via suitable parameter selection to switch between translational (convergence) and vortex-like movements (dispersion). This idea mimics living organism strategies such as foraging and predator avoidance. Performance of the algorithm is studied via simulation results of well-known 2D test functions.

[1]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[2]  Corrinne Pellillo Brase,et al.  Understandable Statistics: Concepts and Methods , 1978 .

[3]  Colin R. McInnes,et al.  Wall following to escape local minima for swarms of agents using internal states and emergent behaviour , 2008 .

[4]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[5]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[6]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[7]  K. Hanagaki,et al.  V % Table of Contents , 1988 .

[8]  Butler Hine,et al.  BEES: exploring Mars with bioinspired technologies , 2004, Computer.

[9]  Xin-She Yang,et al.  Firefly Algorithm, Lévy Flights and Global Optimization , 2010, SGAI Conf..

[10]  Frank Moss,et al.  Pattern formation and stochastic motion of the zooplankton Daphnia in a light field , 2003 .

[11]  Kevin M. Passino,et al.  Biomimicry for Optimization, Control and Automation , 2004, IEEE Transactions on Automatic Control.

[12]  A. Bertozzi,et al.  Self-propelled particles with soft-core interactions: patterns, stability, and collapse. , 2006, Physical review letters.

[13]  P. Olver Nonlinear Systems , 2013 .

[14]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[15]  Jaco F. Schutte,et al.  Particle swarms in sizing and global optimization , 2002 .

[16]  Thomas Weise,et al.  Global Optimization Algorithms -- Theory and Application , 2009 .

[17]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[18]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[19]  Shuang Cong,et al.  A new adaptive inertia weight strategy in particle swarm optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[20]  Jean-Claude Latombe,et al.  Numerical potential field techniques for robot path planning , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[21]  Werner Ebeling Nonequilibrium statistical mechanics of swarms of driven particles , 2002 .

[22]  A. Mucherino,et al.  Monkey search: a novel metaheuristic search for global optimization , 2007 .

[23]  Debasish Ghose,et al.  Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions , 2009, Swarm Intelligence.

[24]  Helbert E. Espitia,et al.  Path planning of mobile robots using potential fields and swarms of Brownian particles , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).