Pain intensity estimation by a self-taught selection of histograms of topographical features

Pain assessment through observational pain scales is necessary for special categories of patients such as neonates, patients with dementia, and critically ill patients. The recently introduced Prkachin-Solomon score allows pain assessment directly from facial images opening the path for multiple assistive applications. In this paper, we proposed a system built upon the Histograms of Topographical (HoT) features, which are a generalization of the topographical primal sketch, for the description of the face parts contributing to the mentioned score. We further propose a semi-supervised, clustering oriented self-taught learning procedure developed on the Cohn-Kanade emotion oriented database by adapting the spectral regression. To make use of inter-frame pain correlation we introduce a machine learning based temporal filtering. We use this procedure to improve the discrimination between different pain intensity levels and the generalization with respect to the monitored persons, while testing on the UNBC McMaster Shoulder Pain database. We introduce the Histogram of Topographical (HoT) features to address the variability in face images.We propose a semi-supervised, clustering-oriented, self-taught learning procedure.We propose a machine learning based, temporal filtering to increase the overall accuracy.A system for face dynamic analysis that applied to pain intensity estimation leads to qualitative results.

[1]  Vladimir Pavlovic,et al.  Context-Sensitive Conditional Ordinal Random Fields for Facial Action Intensity Estimation , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[2]  T Hod,et al.  Observational pain assessment versus self-report in paediatric triage , 2008, Emergency Medicine Journal.

[3]  Fernando De la Torre,et al.  Selective Transfer Machine for Personalized Facial Action Unit Detection , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  C. Gélinas,et al.  Validation and evaluation of two observational pain assessment tools in a trauma and neurosurgical intensive care unit. , 2013, Pain research & management.

[5]  J. Gratch,et al.  The Oxford Handbook of Affective Computing , 2014 .

[6]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[7]  Jennifer N Stinson,et al.  Measurement of self-reported pain intensity in children and adolescents. , 2010, Journal of psychosomatic research.

[8]  Alejandro F. Frangi,et al.  Muliscale Vessel Enhancement Filtering , 1998, MICCAI.

[9]  K. Prkachin The consistency of facial expressions of pain: a comparison across modalities , 1992, Pain.

[10]  Dinu Coltuc,et al.  Strict ordering on discrete images and applications , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[11]  Takeo Kanade,et al.  The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[12]  Jeffrey F. Cohn,et al.  Automatic detection of pain intensity , 2012, ICMI '12.

[13]  Jeffrey F. Cohn,et al.  Painful monitoring: Automatic pain monitoring using the UNBC-McMaster shoulder pain expression archive database , 2012, Image Vis. Comput..

[14]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  Nicu Sebe,et al.  We are not All Equal: Personalizing Models for Facial Expression Analysis with Transductive Parameter Transfer , 2014, ACM Multimedia.

[16]  K. Prkachin,et al.  The structure, reliability and validity of pain expression: Evidence from patients with shoulder pain , 2008, PAIN.

[17]  Thomas Hadjistavropoulos,et al.  Pain: Psychological Perspectives , 2004 .

[18]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[19]  MPharm MNStud PhD Rn Frcna Elizabeth Manias BPharm,et al.  Observation of pain assessment and management − the complexities of clinical practice , 2002 .

[20]  Loris Nanni,et al.  Introduction to Neonatal Facial Pain Detection Using Common and Advanced Face Classification Techniques , 2007, Advanced Computational Intelligence Paradigms in Healthcare.

[21]  Tony Lindeberg Image Matching Using Generalized Scale-Space Interest Points , 2013, SSVM.

[22]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[23]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[24]  Wassim M. Haddad,et al.  Relevance Vector Machine Learning for Neonate Pain Intensity Assessment Using Digital Imaging , 2010, IEEE Transactions on Biomedical Engineering.

[25]  John Hatzis,et al.  The wrinkle and its measurement--a skin surface Profilometric method. , 2004, Micron.

[26]  Jiawei Han,et al.  Spectral Regression for Efficient Regularized Subspace Learning , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[27]  Ulf Lindblom,et al.  CLASSIFICATION OF CHRONIC PAIN , 2004 .

[28]  Lei Zhang,et al.  Robust Principal Component Analysis with Complex Noise , 2014, ICML.

[29]  C. L. Baeyer,et al.  Systematic review of observational (behavioral) measures of pain for children and adolescents aged 3 to 18 years , 2007, Pain.

[30]  Jeffrey F. Cohn,et al.  Painful data: The UNBC-McMaster shoulder pain expression archive database , 2011, Face and Gesture 2011.

[31]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Ayoub Al-Hamadi,et al.  Towards Pain Monitoring: Facial Expression, Head Pose, a new Database, an Automatic System and Remaining , 2013, BMVC.

[33]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[34]  Davis Rn The Checklist Manifesto. How to get things right , 2010 .

[35]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[36]  Thomas G. Dietterich,et al.  Principal Curvature-Based Region Detector for Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Hwann-Tzong Chen,et al.  Histogram-based interest point detectors , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Zhihong Zeng,et al.  A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions , 2009, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Matti Pietikäinen,et al.  Discriminative features for texture description , 2012, Pattern Recognit..

[41]  Rajat Raina,et al.  Self-taught learning: transfer learning from unlabeled data , 2007, ICML '07.

[42]  Alina Oprea,et al.  Dynamic range enhancement of consumer digital camera acquired hip prosthesis X-ray images , 2007, 2007 15th European Signal Processing Conference.

[43]  T. Lindeberg Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[44]  Louise Rose,et al.  Pain descriptors for critically ill patients unable to self-report. , 2012, Journal of advanced nursing.

[45]  A. M. Harvey Classification of Chronic Pain—Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms , 1995 .

[46]  A. Akobeng,et al.  THE STRUCTURE, RELIABILITY AND VALIDITY OF THE IMPACT QUESTIONNAIRE TO MEASURE QUALITY OF LIFE IN CHILDREN WITH INFLAMMATORY BOWEL DISEASE: PG2-19 , 2005 .

[47]  M. Stites,et al.  Observational pain scales in critically ill adults. , 2013, Critical care nurse.

[48]  R. Haralick,et al.  The Topographic Primal Sketch , 1983 .

[49]  Korris Fu-Lai Chung,et al.  Transfer Spectral Clustering , 2012, ECML/PKDD.

[50]  J. Cohn,et al.  Automated Face Analysis for Affective Computing , 2015 .

[51]  Corneliu Florea,et al.  Learning Pain from Emotion: Transferred HoT Data Representation for Pain Intensity Estimation , 2014, ECCV Workshops.

[52]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[53]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[54]  Nicolas Molinari,et al.  Psychometric comparison of three behavioural scales for the assessment of pain in critically ill patients unable to self-report , 2014, Critical Care.

[55]  Gwen Littlewort,et al.  Faces of pain: automated measurement of spontaneousallfacial expressions of genuine and posed pain , 2007, ICMI '07.

[56]  Matti Pietikäinen,et al.  Capturing correlations of local features for image representation , 2016, Neurocomputing.

[57]  Tsuhan Chen,et al.  The painful face - Pain expression recognition using active appearance models , 2009, Image Vis. Comput..

[58]  Nicu Sebe,et al.  Unsupervised Domain Adaptation for Personalized Facial Emotion Recognition , 2014, ICMI.

[59]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[60]  Ursula Hess,et al.  Facial age affects emotional expression decoding , 2014, Front. Psychol..

[61]  K. Craig,et al.  Social influences and the communication of pain , 2004 .

[62]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[63]  Iasonas Kokkinos,et al.  Bottom-Up & Top-down Object Detection using Primal Sketch Features and Graphical Models , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[64]  FloreaCorneliu,et al.  Pain intensity estimation by a self-taught selection of histograms of topographical features , 2016 .

[65]  H. Merskey,et al.  Classification of chronic pain. Descriptions of chronic pain syndromes and definitions of pain terms. Prepared by the International Association for the Study of Pain, Subcommittee on Taxonomy. , 1994, Pain. Supplement.

[66]  Peter H. Tu,et al.  Learning person-specific models for facial expression and action unit recognition , 2013, Pattern Recognit. Lett..

[67]  Maja Pantic,et al.  Continuous Pain Intensity Estimation from Facial Expressions , 2012, ISVC.

[68]  Jun Wang,et al.  Static topographic modeling for facial expression recognition and analysis , 2007, Comput. Vis. Image Underst..