Local Tests for Identifying Anisotropic Diffusion Areas in Human Brain with DTI.

Diffusion tensor imaging (DTI) plays a key role in analyzing the physical structures of biological tissues, particularly in reconstructing fiber tracts of the human brain in vivo. On the one hand, eigenvalues of diffusion tensors (DTs) estimated from diffusion weighted imaging (DWI) data usually contain systematic bias, which subsequently biases the diffusivity measurements popularly adopted in fiber tracking algorithms. On the other hand, correctly accounting for the spatial information is important in the construction of these diffusivity measurements since the fiber tracts are typically spatially structured. This paper aims to establish test-based approaches to identify anisotropic water diffusion areas in the human brain. These areas in turn indicate the areas passed by fiber tracts. Our proposed test statistic not only takes into account the bias components in eigenvalue estimates, but also incorporates the spatial information of neighboring voxels. Under mild regularity conditions, we demonstrate that the proposed test statistic asymptotically follows a χ2 distribution under the null hypothesis. Simulation and real DTI data examples are provided to illustrate the efficacy of our proposed methods.

[1]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Tao Yu,et al.  MULTIPLE TESTING VIA FDRL FOR LARGE SCALE IMAGING DATA , 2011 .

[3]  John D. Storey,et al.  Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach , 2004 .

[4]  P. Qiu The Statistical Evaluation of Medical Tests for Classification and Prediction , 2005 .

[5]  Andrew L. Alexander,et al.  An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations , 2003, NeuroImage.

[6]  Dinggang Shen,et al.  Multiscale adaptive regression models for neuroimaging data , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[7]  L. M. Auer,et al.  Fiber Tracking from DTI Using Linear State Space Models: Detectability of the Pyramidal Tract , 2002, NeuroImage.

[8]  Heping Zhang,et al.  A statistical framework for the classification of tensor morphologies in diffusion tensor images. , 2006, Magnetic resonance imaging.

[9]  J. Ibrahim,et al.  Statistical Analysis of Diffusion Tensors in Diffusion-Weighted Magnetic Resonance Imaging Data , 2007 .

[10]  Christos Davatzikos,et al.  A Framework for Callosal Fiber Distribution Analysis , 2002, NeuroImage.

[11]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[12]  P. Basser Diffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy , 2009 .

[13]  P van Gelderen,et al.  Water diffusion and acute stroke , 1994, Magnetic resonance in medicine.

[14]  John D. Storey A direct approach to false discovery rates , 2002 .

[15]  D L Parker,et al.  Comparison of gradient encoding schemes for diffusion‐tensor MRI , 2001, Journal of magnetic resonance imaging : JMRI.

[16]  J. Tsuruda,et al.  Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. , 1990, Radiology.

[17]  E. Bullmore,et al.  Formal characterization and extension of the linearized diffusion tensor model , 2005, Human brain mapping.

[18]  Paul H. C. Eilers,et al.  3D space-varying coefficient models with application to diffusion tensor imaging , 2007, Comput. Stat. Data Anal..

[19]  Derek K. Jones,et al.  Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[20]  Carl-Fredrik Westin,et al.  Automatic Tractography Segmentation Using a High-Dimensional White Matter Atlas , 2007, IEEE Transactions on Medical Imaging.

[21]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[22]  Derek K. Jones,et al.  RESTORE: Robust estimation of tensors by outlier rejection , 2005, Magnetic resonance in medicine.

[23]  Karsten Tabelow,et al.  Structural Adaptive Smoothing in Diffusion Tensor Imaging: The R Package dti , 2009 .

[24]  A. Anderson Theoretical analysis of the effects of noise on diffusion tensor imaging , 2001, Magnetic resonance in medicine.

[25]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[26]  Fabrice Heitz,et al.  A new high order tensor decomposition: Application to reorientation. , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[27]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[28]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[29]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[30]  Ruzena Bajcsy,et al.  Similarity Measures for Matching Diffusion Tensor Images , 1999, BMVC.

[31]  Kim M. Dalton,et al.  Gaze fixation and the neural circuitry of face processing in autism , 2005, Nature Neuroscience.

[32]  R. Henkelman Measurement of signal intensities in the presence of noise in MR images. , 1985, Medical physics.

[33]  Karsten Tabelow,et al.  Diffusion tensor imaging: Structural adaptive smoothing , 2008, NeuroImage.

[34]  J. Pekar,et al.  MR color mapping of myelin fiber orientation. , 1991, Journal of computer assisted tomography.

[35]  Isabelle Bloch,et al.  Distortion correction and robust tensor estimation for MR diffusion imaging , 2002, Medical Image Anal..

[36]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.