On the Generic (Im)possibility of Full Surplus Extraction in Mechanism Design

A number of studies, most notably Cremer and McLean (1985, 1988), have shown that in Harsanyi type spaces of a fixed finite size, it is generically possible to design mechanisms that extract all the surplus from players, and as a consequence, implement any outcome as if the players’ private information were commonly known. In contrast, we show that within the set of common priors on the universal type space, the subset of priors that permit the extraction of the players’ full surplus is shy. Shyness is an otion of smallness for convex subsets of infinite-dimensional topological vector spaces (in our case, the set of common priors), which generalizes the usual notion of zero Lebesgue measure in finite-dimensional spaces.

[1]  A. Mas-Colell The Theory Of General Economic Equilibrium , 1985 .

[2]  J. C. C. McKinsey Reducible Boolean functions , 1936 .

[3]  Richard P. McLean,et al.  Optimal Selling Strategies under Uncertainty for a Discriminating Monopolist When Demands Are Interdependent , 1985 .

[4]  Sylvain Sorin,et al.  Repeated Games. Part A: Background Material , 1994 .

[5]  Sérgio O. Parreiras Correlated information, mechanism design and informational rents , 2005, J. Econ. Theory.

[6]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[7]  Richard P. McLean,et al.  FULL EXTRACTION OF THE SURPLUS IN BAYESIAN AND DOMINANT STRATEGY AUCTIONS , 1988 .

[8]  Chris Shannon,et al.  Uncertainty in Mechanism Design , 2021, 2108.12633.

[9]  P. Reny,et al.  Correlated Information and Mechanism Design , 1992 .

[10]  Faruk Gul A Comment on Aumann's Bayesian View , 1998 .

[11]  Eddie Dekel,et al.  Hierarchies of Beliefs and Common Knowledge , 1993 .

[12]  A. Ostaszewski TOPOLOGY AND BOREL STRUCTURE , 1976 .

[13]  Jacques Crémer,et al.  Correlation, independence, and Bayesian incentives , 2003, Soc. Choice Welf..

[14]  Masaki Aoyagi,et al.  Correlated Types and Bayesian Incentive Compatible Mechanisms with Budget Balance , 1998 .

[15]  B. Hunt Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces , 1992, math/9210220.

[16]  C. d'Aspremont,et al.  Incentives and incomplete information , 1979 .

[17]  J. Robert Continuity In Auction Design , 1991 .

[18]  Jeffrey C. Ely,et al.  Foundations of Dominant Strategy Mechanisms , 2007 .

[19]  Robert B. Wilson Game-Theoretic Analysis of Trading Processes. , 1985 .

[20]  Hitoshi Matsushima,et al.  Virtual implementation in iteratively undominated strategies: complete information , 1992 .

[21]  R. McAfee,et al.  Extracting the Surplus in the Common-Value Auction , 1989 .

[22]  Sandro Brusco,et al.  Unique Implementation of the Full Surplus Extraction Outcome in Auctions with Correlated Types , 1998 .

[23]  John C. Harsanyi,et al.  Games with Incomplete Information Played by "Bayesian" Players, I-III: Part I. The Basic Model& , 2004, Manag. Sci..

[24]  Claude d'Aspremont,et al.  Bayesian incentive compatible beliefs , 1982 .

[25]  D. Bergemann,et al.  Robust Mechanism Design , 2003 .

[26]  G. Kosenok,et al.  Individually Rational, Balanced-Budget Bayesian Mechanisms and the Informed Principal Problem , 2004 .

[27]  J. Laffont,et al.  Mechanism Design with Collusion and Correlation , 2000 .

[28]  Jeffrey C. Ely,et al.  Hierarchies of Belief and Interim Rationalizability , 2004 .

[29]  A. Heifetz The bayesian formulation of incomplete information — The non-compact case , 1993 .

[30]  S. Zamir,et al.  Formulation of Bayesian analysis for games with incomplete information , 1985 .

[31]  William R. Zame,et al.  Genericity with Infinitely Many Parameters , 2001 .

[32]  Zvika Neeman,et al.  The relevance of private information in mechanism design , 2004, J. Econ. Theory.

[33]  Jacques Crémer,et al.  Balanced Bayesian Mechanisms ∗ , 2017 .

[34]  Zvika Neeman The effectiveness of English auctions , 2003, Games Econ. Behav..

[35]  S. Morris The Common Prior Assumption in Economic Theory , 1995, Economics and Philosophy.

[36]  Motty Perry,et al.  Supplement to "Toward a Strategic Foundation for Rational Expectations Equilibrium , 2006 .

[37]  Y. Yamasaki,et al.  Measures on infinite dimensional spaces , 1984 .

[38]  R. Zeckhauser,et al.  Efficient Design with Interdependent Valuations and an Informed Center , 2002 .

[39]  P. Bag Optimal auction design and R&D , 1997 .

[40]  R. Zeckhauser,et al.  Efficiency Despite Mutually Payoff-Relevant Private Information: The Finite Case , 1990 .

[41]  R. Aumann Common priors: A reply to Gul , 1998 .

[42]  Jonathan Weinstein,et al.  Finite-Order Implications of Any Equilibrium , 2004 .

[43]  S. Morris,et al.  PAYOFF CONTINUITY IN INCOMPLETE INFORMATION GAMES , 1998 .