A 1.5-GHz 6.144T Correlations/s 64 $\times $ 64 Cross-Correlator With 128 Integrated ADCs for Real-Time Synthetic Aperture Imaging

A 65-nm CMOS, 18-mm<sup>2</sup>, 1.5-GHz 64 <inline-formula> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> 64 cross-correlator with 128 on-chip analog-to-digital converters (ADCs) enables real-time synthetic aperture radiometric imaging. This brief enables high-resolution synthetic aperture radiometry by greatly improving the integration and energy efficiency of the mixed-signal baseband cross-correlator. The design supports analog-in and digital correlation out, removing approximately 5 W of power that would otherwise be needed for I/O between the ADCs and the digital correlation core. The prototype 6.144T correlation/s 1.5 Gsamples/s 64 <inline-formula> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> 64 correlator is designed for satellite-based radiometric imaging of water in the atmosphere. Massive parallelism together with an optimized correlation scheme leads to a measured energy consumption of only 0.35 pJ/correlation/cycle. A correlation efficiency greater than 90% is achieved for input signal levels greater than −30 dBm.

[1]  S. Weinreb A digital spectral analysis technique and its application to radio astronomy , 1963 .

[2]  W. J. Wilson,et al.  Millimeter-wave imaging sensor data evaluation , 1987 .

[3]  C. Ruf,et al.  Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth , 1988 .

[4]  Christopher Ruf Digital correlators for synthetic aperture interferometric radiometry , 1995, IEEE Trans. Geosci. Remote. Sens..

[5]  T. Calin,et al.  Upset hardened memory design for submicron CMOS technology , 1996 .

[6]  M. Shea,et al.  CREME96: A Revision of the Cosmic Ray Effects on Micro-Electronics Code , 1997 .

[7]  R Appleby,et al.  Passive millimetre–wave imaging and how it differs from terahertz imaging , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Christopher Ruf,et al.  GeoSTAR - a microwave sounder for geostationary satellites , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[9]  Christopher Ruf,et al.  Initial Results of the Geostationary Synthetic Thinned Array Radiometer (GeoSTAR) Demonstrator Instrument , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Todd Gaier,et al.  Monitoring the Hydrologic Cycle With the PATH Mission , 2010, Proceedings of the IEEE.

[11]  Stefan Back Andersson,et al.  1.6 GHz Low-Power Cross-Correlator System Enabling Geostationary Earth Orbit Aperture Synthesis , 2014, IEEE Journal of Solid-State Circuits.

[12]  Zhengya Zhang,et al.  Characterization of Heavy-Ion-Induced Single-Event Effects in 65 nm Bulk CMOS ASIC Test Chips , 2014, IEEE Transactions on Nuclear Science.

[13]  David Austerberry,et al.  Test methodology for the geostar correlator , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).