The phase structure of causal dynamical triangulations with toroidal spatial topology

A bstractWe investigate the impact of topology on the phase structure of fourdimensional Causal Dynamical Triangulations (CDT). Using numerical Monte Carlo simulations we study CDT with toroidal spatial topology. We confirm existence of all four distinct phases of quantum geometry earlier observed in CDT with spherical spatial topology. We plot the toroidal CDT phase diagram and find that it looks very similar to the case of the spherical spatial topology.

[1]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[2]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[3]  T. Regge General relativity without coordinates , 1961 .

[4]  J. Jurkiewicz,et al.  Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations , 2014, 1411.7712.

[5]  S. Zohren,et al.  Nonperturbative sum over topologies in 2D Lorentzian quantum gravity , 2006, hep-th/0603079.

[6]  J. Jurkiewicz,et al.  New higher-order transition in causal dynamical triangulations , 2017, 1704.04373.

[7]  Frank Saueressig,et al.  Quantum gravity on foliated spacetimes: Asymptotically safe and sound , 2016, 1609.04813.

[8]  Petr Hořava Spectral dimension of the universe in quantum gravity at a lifshitz point. , 2009, Physical review letters.

[9]  R. Loll,et al.  Space-time foam in 2D and the sum over topologies , 2003 .

[10]  A. Görlich,et al.  Planckian birth of a quantum de sitter universe. , 2007, Physical review letters.

[11]  É. Brézin,et al.  Renormalization of the nonlinear sigma model in 2 + epsilon dimensions. Application to the Heisenberg ferromagnets , 1976 .

[12]  R. L. Renken,et al.  Simulations Of Four Dimensional Simplicial Quantum Gravity , 1994 .

[13]  R. Loll,et al.  Non-perturbative Lorentzian Quantum Gravity, Causality and Topology Change , 1998 .

[14]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[15]  Frank Saueressig,et al.  Renormalization group fixed points of foliated gravity-matter systems , 2017, 1702.06539.

[16]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[17]  Daniel F. Litim,et al.  Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[19]  A. Görlich,et al.  Characteristics of the new phase in CDT , 2016, The European physical journal. C, Particles and fields.

[20]  G. Hooft,et al.  One loop divergencies in the theory of gravitation , 1974 .

[21]  Reconstructing the universe , 2005, hep-th/0505154.

[22]  J. Jurkiewicz,et al.  Euclidian 4d quantum gravity with a non-trivial measure term , 2013, 1307.2270.

[23]  Z. Burda,et al.  Focusing on the fixed point of 4D simplicial gravity , 1996 .

[24]  A. Migdal,et al.  Simulations of Four-Dimensional Simplicial Quantum Gravity as Dynamical Triangulation , 1992 .

[25]  J. Mielczarek,et al.  Towards the map of quantum gravity , 2017, General Relativity and Gravitation.

[26]  Bas V. de Bakker Further evidence that the transition of 4D dynamical triangulation is 1st order , 1996 .

[27]  A. Görlich,et al.  The effective action in 4-dim CDT. The transfer matrix approach , 2014, Journal of High Energy Physics.

[28]  P. Bia Focusing on the fixed point of 4D simplicial gravity , 2003 .

[29]  J. Laiho,et al.  Exploring Euclidean dynamical triangulations with a non-trivial measure term , 2014, 1401.3299.

[30]  Jerzy Jurkiewicz,et al.  Four-dimensional simplicial quantum gravity , 1992 .

[31]  D. Raine General relativity , 1980, Nature.

[32]  Kevin T. Grosvenor,et al.  Four-dimensional CDT with toroidal topology , 2017, 1705.07653.

[33]  Augusto Sagnotti,et al.  The ultraviolet behavior of Einstein gravity , 1986 .

[34]  Jerzy Jurkiewicz,et al.  Searching for a continuum limit in causal dynamical triangulation quantum gravity , 2016, 1603.02076.

[35]  Copenhagen,et al.  Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.

[36]  J. Jurkiewicz,et al.  Second-order phase transition in causal dynamical triangulations. , 2011, Physical review letters.

[37]  A. Wipf,et al.  Asymptotic safety on the lattice: The nonlinear O(N) sigma model , 2014, 1402.1851.

[38]  J. Jurkiewicz,et al.  Spectral dimension of the universe , 2005, hep-th/0505113.

[39]  Yuki Sato,et al.  2d CDT is 2d Hořava–Lifshitz quantum gravity , 2013, 1302.6359.

[40]  A. Kurov,et al.  Impact of topology in foliated quantum Einstein gravity , 2017, The European Physical Journal C.

[41]  J. Henson,et al.  Spacetime condensation in (2+1)-dimensional CDT from a Hořava–Lifshitz minisuperspace model , 2014, 1410.0845.

[42]  Joe Henson,et al.  Spectral geometry as a probe of quantum spacetime , 2009, 0911.0401.

[43]  Jerzy Jurkiewicz,et al.  Second- and first-order phase transitions in causal dynamical triangulations , 2012 .

[44]  A. Görlich,et al.  The semiclassical limit of causal dynamical triangulations , 2011, 1102.3929.

[45]  Lisa Glaser,et al.  Extrinsic curvature in two-dimensional causal dynamical triangulation , 2016 .

[46]  Daniel F Litim Fixed points of quantum gravity. , 2004, Physical review letters.

[47]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[48]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[49]  J. Kogut,et al.  Phase structure of four dimensional simplicial quantum gravity , 1994, hep-lat/9401026.

[50]  J. Jurkiewicz,et al.  The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.

[51]  Patrick R. Zulkowski,et al.  Quantizing Horava-Lifshitz Gravity via Causal Dynamical Triangulations , 2011, 1111.6634.

[52]  J. Jurkiewicz,et al.  Nonperturbative quantum de Sitter universe , 2008, 0807.4481.

[53]  J. Jurkiewicz,et al.  A second-order phase transition in CDT , 2011, 1108.3932.

[54]  J. Jurkiewicz,et al.  Impact of topology in causal dynamical triangulations quantum gravity , 2016, 1604.08786.

[55]  S. Zohren,et al.  Taming the cosmological constant in 2D causal quantum gravity with topology change , 2005, hep-th/0507012.

[56]  J. Jurkiewicz,et al.  Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.

[57]  J. Jurkiewicz,et al.  Signature change of the metric in CDT quantum gravity? , 2015, Journal of High Energy Physics.

[58]  A. Görlich,et al.  CDT meets Hořava-Lifshitz gravity , 2010, 1002.3298.

[59]  Petr Hořava Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.

[60]  Kupiainen,et al.  Renormalizing the nonrenormalizable. , 1985, Physical review letters.

[61]  J. Jurkiewicz,et al.  Renormalization group flow in CDT , 2014, 1405.4585.

[62]  Exploring the new phase transition of CDT , 2015, 1510.08672.

[63]  J. Laiho,et al.  Lattice Quantum Gravity and Asymptotic Safety , 2016, 1604.02745.

[64]  J. Jurkiewicz,et al.  Second- and First-Order Phase Transitions in CDT , 2012, 1205.1229.