The phase structure of causal dynamical triangulations with toroidal spatial topology
暂无分享,去创建一个
J. Jurkiewicz | A. Görlich | J. Jurkiewicz | J. Ambjorn | J. Ambjørn | A. Görlich | J. Gizbert-Studnicki | D. Németh | J. Gizbert-Studnicki | D. Németh
[1] Martin Reuter,et al. Nonperturbative evolution equation for quantum gravity , 1998 .
[2] P. Di Francesco,et al. 2D gravity and random matrices , 1993 .
[3] T. Regge. General relativity without coordinates , 1961 .
[4] J. Jurkiewicz,et al. Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations , 2014, 1411.7712.
[5] S. Zohren,et al. Nonperturbative sum over topologies in 2D Lorentzian quantum gravity , 2006, hep-th/0603079.
[6] J. Jurkiewicz,et al. New higher-order transition in causal dynamical triangulations , 2017, 1704.04373.
[7] Frank Saueressig,et al. Quantum gravity on foliated spacetimes: Asymptotically safe and sound , 2016, 1609.04813.
[8] Petr Hořava. Spectral dimension of the universe in quantum gravity at a lifshitz point. , 2009, Physical review letters.
[9] R. Loll,et al. Space-time foam in 2D and the sum over topologies , 2003 .
[10] A. Görlich,et al. Planckian birth of a quantum de sitter universe. , 2007, Physical review letters.
[11] É. Brézin,et al. Renormalization of the nonlinear sigma model in 2 + epsilon dimensions. Application to the Heisenberg ferromagnets , 1976 .
[12] R. L. Renken,et al. Simulations Of Four Dimensional Simplicial Quantum Gravity , 1994 .
[13] R. Loll,et al. Non-perturbative Lorentzian Quantum Gravity, Causality and Topology Change , 1998 .
[14] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[15] Frank Saueressig,et al. Renormalization group fixed points of foliated gravity-matter systems , 2017, 1702.06539.
[16] Frank Saueressig,et al. ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.
[17] Daniel F. Litim,et al. Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[18] Christoph Rahmede,et al. Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.
[19] A. Görlich,et al. Characteristics of the new phase in CDT , 2016, The European physical journal. C, Particles and fields.
[20] G. Hooft,et al. One loop divergencies in the theory of gravitation , 1974 .
[21] Reconstructing the universe , 2005, hep-th/0505154.
[22] J. Jurkiewicz,et al. Euclidian 4d quantum gravity with a non-trivial measure term , 2013, 1307.2270.
[23] Z. Burda,et al. Focusing on the fixed point of 4D simplicial gravity , 1996 .
[24] A. Migdal,et al. Simulations of Four-Dimensional Simplicial Quantum Gravity as Dynamical Triangulation , 1992 .
[25] J. Mielczarek,et al. Towards the map of quantum gravity , 2017, General Relativity and Gravitation.
[26] Bas V. de Bakker. Further evidence that the transition of 4D dynamical triangulation is 1st order , 1996 .
[27] A. Görlich,et al. The effective action in 4-dim CDT. The transfer matrix approach , 2014, Journal of High Energy Physics.
[28] P. Bia. Focusing on the fixed point of 4D simplicial gravity , 2003 .
[29] J. Laiho,et al. Exploring Euclidean dynamical triangulations with a non-trivial measure term , 2014, 1401.3299.
[30] Jerzy Jurkiewicz,et al. Four-dimensional simplicial quantum gravity , 1992 .
[31] D. Raine. General relativity , 1980, Nature.
[32] Kevin T. Grosvenor,et al. Four-dimensional CDT with toroidal topology , 2017, 1705.07653.
[33] Augusto Sagnotti,et al. The ultraviolet behavior of Einstein gravity , 1986 .
[34] Jerzy Jurkiewicz,et al. Searching for a continuum limit in causal dynamical triangulation quantum gravity , 2016, 1603.02076.
[35] Copenhagen,et al. Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.
[36] J. Jurkiewicz,et al. Second-order phase transition in causal dynamical triangulations. , 2011, Physical review letters.
[37] A. Wipf,et al. Asymptotic safety on the lattice: The nonlinear O(N) sigma model , 2014, 1402.1851.
[38] J. Jurkiewicz,et al. Spectral dimension of the universe , 2005, hep-th/0505113.
[39] Yuki Sato,et al. 2d CDT is 2d Hořava–Lifshitz quantum gravity , 2013, 1302.6359.
[40] A. Kurov,et al. Impact of topology in foliated quantum Einstein gravity , 2017, The European Physical Journal C.
[41] J. Henson,et al. Spacetime condensation in (2+1)-dimensional CDT from a Hořava–Lifshitz minisuperspace model , 2014, 1410.0845.
[42] Joe Henson,et al. Spectral geometry as a probe of quantum spacetime , 2009, 0911.0401.
[43] Jerzy Jurkiewicz,et al. Second- and first-order phase transitions in causal dynamical triangulations , 2012 .
[44] A. Görlich,et al. The semiclassical limit of causal dynamical triangulations , 2011, 1102.3929.
[45] Lisa Glaser,et al. Extrinsic curvature in two-dimensional causal dynamical triangulation , 2016 .
[46] Daniel F Litim. Fixed points of quantum gravity. , 2004, Physical review letters.
[47] S. Hawking,et al. General Relativity; an Einstein Centenary Survey , 1979 .
[48] M. Niedermaier,et al. The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.
[49] J. Kogut,et al. Phase structure of four dimensional simplicial quantum gravity , 1994, hep-lat/9401026.
[50] J. Jurkiewicz,et al. The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.
[51] Patrick R. Zulkowski,et al. Quantizing Horava-Lifshitz Gravity via Causal Dynamical Triangulations , 2011, 1111.6634.
[52] J. Jurkiewicz,et al. Nonperturbative quantum de Sitter universe , 2008, 0807.4481.
[53] J. Jurkiewicz,et al. A second-order phase transition in CDT , 2011, 1108.3932.
[54] J. Jurkiewicz,et al. Impact of topology in causal dynamical triangulations quantum gravity , 2016, 1604.08786.
[55] S. Zohren,et al. Taming the cosmological constant in 2D causal quantum gravity with topology change , 2005, hep-th/0507012.
[56] J. Jurkiewicz,et al. Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.
[57] J. Jurkiewicz,et al. Signature change of the metric in CDT quantum gravity? , 2015, Journal of High Energy Physics.
[58] A. Görlich,et al. CDT meets Hořava-Lifshitz gravity , 2010, 1002.3298.
[59] Petr Hořava. Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.
[60] Kupiainen,et al. Renormalizing the nonrenormalizable. , 1985, Physical review letters.
[61] J. Jurkiewicz,et al. Renormalization group flow in CDT , 2014, 1405.4585.
[62] Exploring the new phase transition of CDT , 2015, 1510.08672.
[63] J. Laiho,et al. Lattice Quantum Gravity and Asymptotic Safety , 2016, 1604.02745.
[64] J. Jurkiewicz,et al. Second- and First-Order Phase Transitions in CDT , 2012, 1205.1229.