Algorithms for the minimum diameter terminal Steiner tree problem

Given an undirected connected graph $$G=(V(G),E(G),d)$$ with a function $$d(\cdot )\ge 0$$ on edges and a subset $$S\subseteq V(G)$$ of terminals, the minimum diameter terminal Steiner tree problem (MDTSTP) asks for a terminal Steiner tree in $$G$$ of a minimum diameter. In the paper, the diameter of a tree refers to the longest of all the distances between two different leaves of the tree. When $$G$$ is a complete graph and $$d(\cdot )$$ is a metric function, we demonstrate that an optimal solution of MDTSTP is monopolar or dipolar and give an $$O(|S|\cdot |V(G)\setminus S|^2)$$-time exact algorithm. For the nonmetric version of MDTSTP, we present a simple 2-approximation algorithm with a time complexity of $$O(|V(G)\setminus S|\log |S|)$$, as well as two exact algorithms with a time complexity of $$O(|S|^3|V(G)|^2)$$ and $$O(|S|\cdot |V(G)\setminus S|^2+|S|^2\cdot |V(G)\setminus S|)$$, respectively.

[1]  Edmund Ihler,et al.  On Shortest Networks for Classes of Points in the Plane , 1991, Workshop on Computational Geometry.

[2]  Bernhard Fuchs A note on the terminal Steiner tree problem , 2003, Inf. Process. Lett..

[3]  Refael Hassin,et al.  On the Minimum Diameter Spanning Tree Problem , 1995, Inf. Process. Lett..

[4]  José Coelho de Pina,et al.  Algorithms for terminal Steiner trees , 2007, Theor. Comput. Sci..

[5]  Shih-Cheng Yang,et al.  On the Internal Steiner Tree Problem , 2007, TAMC.

[6]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[7]  Sergey Bereg,et al.  Computing a (1+ε)-Approximate Geometric Minimum-Diameter Spanning Tree , 2003, Algorithmica.

[8]  Guohui Lin,et al.  On the terminal Steiner tree problem , 2002, Inf. Process. Lett..

[9]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. I: The p-Centers , 1979 .

[10]  Ding-Zhu Du,et al.  Steiner tree problems in computer communication networks , 2008 .

[11]  Shih-Cheng Yang,et al.  Approximating the selected-internal Steiner tree , 2007, Theor. Comput. Sci..

[12]  Guy Kortsarz,et al.  Approximating the Weight of Shallow Steiner Trees , 1999, Discret. Appl. Math..

[13]  Yen Hung Chen An Improved Approximation Algorithm for the Terminal Steiner Tree Problem , 2011, ICCSA.

[14]  Donghyun Kim,et al.  A Better Constant-Factor Approximation for Selected-Internal Steiner Minimum Tree , 2010, Algorithmica.

[15]  Chak-Kuen Wong,et al.  Minimum Diameter Spanning Trees and Related Problems , 1991, SIAM J. Comput..

[16]  Sun-Yuan Hsieh,et al.  On the Partial-Terminal Steiner Tree Problem , 2008, ISPAN.

[17]  José Coelho de Pina,et al.  Algorithms for Terminal Steiner Trees , 2005, COCOON.

[18]  Fabrizio Grandoni,et al.  An improved LP-based approximation for steiner tree , 2010, STOC '10.

[19]  Chuan Yi Tang,et al.  The Full Steiner Tree Problem in Phylogeny , 2002, COCOON.

[20]  Timothy M. Chan Semi-online maintenance of geometric optima and measures , 2002, SODA '02.

[21]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[22]  Marshall W. Bern,et al.  The Steiner Problem with Edge Lengths 1 and 2 , 1989, Inf. Process. Lett..

[23]  Chuan Yi Tang,et al.  On the Full and Bottleneck Full Steiner Tree Problems , 2003, COCOON.

[24]  Christian Lavault,et al.  A distributed algorithm for constructing a minimum diameter spanning tree , 2004, J. Parallel Distributed Comput..

[25]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .

[26]  Alexander Wolff,et al.  Approximating the Geometric Minimum-Diameter Spanning Tree , 2002 .

[27]  Stefan Hougardy,et al.  On approximation algorithms for the terminal Steiner tree problem , 2004, Inf. Process. Lett..