Sedimentation of hard-sphere suspensions at low Reynolds number

Lattice-Boltzmann simulations have been used to investigate low-Reynolds-number settling of monodisperse and polydisperse suspensions. We confirm the discovery that particle velocity fluctuations are strongly suppressed by no-slip walls at the top and bottom of the system, even in regions distant from the boundaries. We also show that a monodisperse suspension develops a strongly anisotropic long-range microstructure during the settling process, with vanishing density fluctuations in the horizontal plane. We find no numerical evidence that the particle concentration in the bulk is stratified; diffusive spreading of the suspension–supernatant interface is suppressed by hindered settling, as would be expected in moderately concentrated suspensions. Long-range correlations in particle density fluctuations are destroyed by polydispersity in particle size, and in this case density fluctuations are finite at all length scales and in all directions. However, in polydisperse suspensions there is significant stratification, due to differential settling rather than interface diffusion, which provides an alternative mechanism for screening the hydrodynamic interactions. It is possible that this is the dominant mechanism for hydrodynamic screening in several laboratory experiments.

[1]  Pierre Lallemand,et al.  Lattice Gas Hydrodynamics in Two and Three Dimensions , 1987, Complex Syst..

[2]  Robert H. Davis,et al.  Spreading of the interface at the top of a slightly polydisperse sedimenting suspension , 1988, Journal of Fluid Mechanics.

[3]  Paul M. Chaikin,et al.  Long-range correlations in sedimentation , 1997 .

[4]  A. Ladd,et al.  Microstructure in a settling suspension of hard spheres. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[6]  Sriram Ramaswamy,et al.  Issues in the statistical mechanics of steady sedimentation , 2001 .

[7]  David R. Noble,et al.  A consistent hydrodynamic boundary condition for the lattice Boltzmann method , 1995 .

[8]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[9]  C. Lowe,et al.  Simulating solid colloidal particles using the lattice-Boltzmann method , 2000 .

[10]  P. Mucha,et al.  Nonuniversal velocity fluctuations of sedimenting particles. , 2002, Physical review letters.

[11]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[12]  R. C. Ball,et al.  THE PATHOLOGICAL BEHAVIOUR OF SHEARED HARD SPHERES WITH HYDRODYNAMIC INTERACTIONS , 1995 .

[13]  E. J. Hinch,et al.  Numerical simulation of a concentrated emulsion in shear flow , 1996, Journal of Fluid Mechanics.

[14]  A. Ladd Sedimentation of homogeneous suspensions of non-Brownian spheres , 1997 .

[15]  J. Higdon,et al.  A spectral boundary element approach to three-dimensional Stokes flow , 1995, Journal of Fluid Mechanics.

[16]  SCREENED AND UNSCREENED PHASES IN SEDIMENTING SUSPENSIONS , 1998, cond-mat/9801164.

[17]  Matthaeus,et al.  Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[18]  Bruce J. Ackerson,et al.  Analogies between Colloidal Sedimentation and Turbulent Convection at High Prandtl Numbers , 1998 .

[19]  A. Ladd,et al.  Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Michael P. Brenner,et al.  Screening mechanisms in sedimentation , 1998 .

[21]  G. Batchelor,et al.  The hydrodynamic interaction of two small freely-moving spheres in a linear flow field , 1972, Journal of Fluid Mechanics.

[22]  D. Lhuillier,et al.  Particle velocity fluctuations and correlation lengths in dilute sedimenting suspensions , 2002 .

[23]  C. Aidun,et al.  Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation , 1998, Journal of Fluid Mechanics.

[24]  D Kandhai,et al.  Improved bounce-back methods for no-slip walls in lattice-Boltzmann schemes: theory and simulations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Ladd,et al.  Hydrodynamic screening in sedimenting suspensions of non-Brownian spheres. , 1996, Physical review letters.

[26]  D. d'Humières,et al.  Local second-order boundary methods for lattice Boltzmann models , 1996 .

[27]  Robert S. Bernard,et al.  Boundary conditions for the lattice Boltzmann method , 1996 .

[28]  Dominique d'Humières,et al.  Multireflection boundary conditions for lattice Boltzmann models. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Wei Shyy,et al.  Regular Article: An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method , 1999 .

[30]  Louis J. Durlofsky,et al.  Dynamic simulation of hydrodynamically interacting particles , 1987, Journal of Fluid Mechanics.

[31]  B. Ackerson,et al.  Settling statistics of hard sphere particles. , 2001, Physical review letters.

[32]  Sangtae Kim,et al.  Microhydrodynamics: Principles and Selected Applications , 1991 .

[33]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[34]  Sangtae Kim,et al.  The resistance and mobility functions of two equal spheres in low‐Reynolds‐number flow , 1985 .

[35]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[36]  Weitz,et al.  Velocity fluctuations in fluidized suspensions probed by ultrasonic correlation spectroscopy , 2000, Physical review letters.

[37]  D. Levermore,et al.  A Knudsen layer theory for lattice gases , 1991 .

[38]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[39]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[40]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[41]  P. Mucha,et al.  A model for velocity fluctuations in sedimentation , 2004, Journal of Fluid Mechanics.

[42]  Richard Manasseh,et al.  Dynamics of dual-particles settling under gravity , 1998 .

[43]  O. Filippova,et al.  Grid Refinement for Lattice-BGK Models , 1998 .

[44]  C. Pozrikidis,et al.  On the transient motion of ordered suspensions of liquid drops , 1993, Journal of Fluid Mechanics.

[45]  Wei Shyy,et al.  On the Finite Difference-Based Lattice Boltzmann Method in Curvilinear Coordinates , 1998 .

[46]  G. Batchelor Sedimentation in a dilute dispersion of spheres , 1972, Journal of Fluid Mechanics.

[47]  E. Hinch,et al.  Spreading fronts and fluctuations in sedimentation , 2003 .

[48]  John F. Brady,et al.  STOKESIAN DYNAMICS , 2006 .

[49]  Dynamics of colloidal dispersions via lattice-gas models of an incompressible fluid , 1989 .

[50]  Elisabeth Guazzelli,et al.  Evolution of particle-velocity correlations in sedimentation , 2001 .

[51]  E. Hinch,et al.  Sedimentation of Small Particles , 1988 .

[52]  Elisabeth Guazzelli,et al.  EFFECT OF THE VESSEL SIZE ON THE HYDRODYNAMIC DIFFUSION OF SEDIMENTING SPHERES , 1995 .

[53]  Inchul Kim,et al.  Three-dimensional flow over two spheres placed side by side , 1993, Journal of Fluid Mechanics.

[54]  Patrick J. Fox,et al.  A pore‐scale numerical model for flow through porous media , 1999 .

[55]  James J. Feng,et al.  Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 1. Sedimentation , 1994, Journal of Fluid Mechanics.

[56]  Anthony J. C. Ladd,et al.  Hydrodynamic transport coefficients of random dispersions of hard spheres , 1990 .

[57]  P. Segrè Origin of stability in sedimentation. , 2002, Physical review letters.

[58]  D. Martínez,et al.  On boundary conditions in lattice Boltzmann methods , 1996 .

[59]  A. Ladd Dynamical simulations of sedimenting spheres , 1993 .

[60]  Ladd,et al.  Time-dependent collective diffusion of colloidal particles. , 1995, Physical review letters.

[61]  P. Adler,et al.  Boundary flow condition analysis for the three-dimensional lattice Boltzmann model , 1994 .

[62]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[63]  B. U. Felderhof,et al.  Short‐time diffusion coefficients and high frequency viscosity of dilute suspensions of spherical Brownian particles , 1988 .

[64]  Daniel D. Joseph,et al.  Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows , 1994, Journal of Fluid Mechanics.

[65]  Russel E. Caflisch,et al.  Variance in the sedimentation speed of a suspension , 1985 .

[66]  Skordos,et al.  Initial and boundary conditions for the lattice Boltzmann method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[67]  Wei Shyy,et al.  An accurate curved boundary treatment in the lattice Boltzmann method , 1999 .

[68]  Eric S. G. Shaqfeh,et al.  Screening in sedimenting suspensions , 1991, Journal of Fluid Mechanics.

[69]  Chahid Kamel Ghaddar,et al.  On the permeability of unidirectional fibrous media: A parallel computational approach , 1995 .

[70]  C. P. Lowe,et al.  Long-time tails in angular momentum correlations , 1995 .

[71]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[72]  Hudong Chen,et al.  Realization of Fluid Boundary Conditions via Discrete Boltzmann Dynamics , 1998 .

[73]  P. Lallemand,et al.  Momentum transfer of a Boltzmann-lattice fluid with boundaries , 2001 .

[74]  Hudong Chen VOLUMETRIC FORMULATION OF THE LATTICE BOLTZMANN METHOD FOR FLUID DYNAMICS : BASIC CONCEPT , 1998 .

[75]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[76]  Dewei Qi,et al.  Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows , 1999, Journal of Fluid Mechanics.

[77]  D. Koch Hydrodynamic diffusion in a suspension of sedimenting point particles with periodic boundary conditions , 1994 .

[78]  E. J. Hinch,et al.  Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-Brownian spheres , 1995 .

[79]  P. Raiskinmäki,et al.  Simulations of non-spherical particles suspended in a shear flow , 2000 .

[80]  A. Ladd,et al.  Effects of container walls on the velocity fluctuations of sedimenting spheres. , 2001, Physical review letters.

[81]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[82]  Ladd,et al.  Lattice-boltzmann model with sub-grid-scale boundary conditions , 2000, Physical review letters.

[83]  L. Luo,et al.  Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model , 1997 .

[84]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[85]  J. C. Luke Decay of velocity fluctuations in a stably stratified suspension , 2000 .

[86]  George M. Homsy,et al.  HINDERED SETTLING AND HYDRODYNAMIC DISPERSION IN QUIESCENT SEDIMENTING SUSPENSIONS , 1988 .

[87]  P. Mucha,et al.  Diffusivities and front propagation in sedimentation , 2003 .

[88]  R. Jones,et al.  Image representation of a spherical particle near a hard wall , 1998 .

[89]  Segrè,et al.  Short-time Brownian motion in colloidal suspensions: Experiment and simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.