Complex Singularities and the Lorenz Attractor

The Lorenz attractor is one of the best-known examples of applied mathematics. However, much of what is known about it is a result of numerical calculations and not of mathemat- ical analysis. As a step toward mathematical analysis, we allow the time variable in the three-dimensional Lorenz system to be complex, hoping that solutions that have resisted analysis on the real line will give up their secrets in the complex plane. Knowledge of singularities being fundamental to any investigation in the complex plane, we build upon earlier work and give a complete and consistent formal development of complex singular- ities of the Lorenz system using the psi series. The psi series contain two undetermined constants. In addition, the location of the singularity is undetermined as a consequence of the autonomous nature of the Lorenz system. We prove that the psi series converge, using a technique that is simpler and more powerful than that of Hille, thus implying a two-parameter family of singular solutions of the Lorenz system. We pose three ques- tions, answers to which may bring us closer to understanding the connection of complex singularities to Lorenz dynamics.

[1]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[2]  R. Cooke Real and Complex Analysis , 2011 .

[3]  U. Frisch,et al.  A Borel Transform Method for Locating Singularities of Taylor and Fourier Series , 2006, nlin/0609025.

[4]  C. Foias,et al.  On the behavior of the Lorenz equation backward in time , 2005 .

[5]  C. E. Puente,et al.  The Essence of Chaos , 1995 .

[6]  Divakar Viswanath,et al.  The fractal property of the Lorenz attractor , 2004 .

[7]  Divakar Viswanath,et al.  Symbolic dynamics and periodic orbits of the Lorenz attractor* , 2003 .

[8]  Y. Il'yashenko Centennial History of Hilbert’s 16th Problem , 2002 .

[9]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[10]  Igor Kukavica,et al.  The Lorenz equation as a metaphor for the Navier-Stokes equations , 2001 .

[11]  Amadeu Delshams,et al.  PSI-SERIES OF QUADRATIC VECTOR FIELDS ON THE PLANE , 1997 .

[12]  S. Melkonian,et al.  Convergence of psi-series solutions of the Duffing equation and the Lorenz system , 1995 .

[13]  N. Gupta Integrals of motion for the Lorenz system , 1993 .

[14]  Wolfgang Turschke,et al.  Parameter depending non-holomorphic ordinary differential equations in the complex plane , 1992 .

[15]  M. Tabor,et al.  Integrating the nonintegrable: analytic structure of the Lorenz system revisited , 1988 .

[16]  Roger Temam,et al.  The algebraic approximation of attractors: the finite dimensional case , 1988 .

[17]  Marek Kus,et al.  Integrals of motion for the Lorenz system , 1983 .

[18]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[19]  Michael Tabor,et al.  Analytic structure of the Lorenz system , 1981 .

[20]  R. A. Smith 26.—Singularities of Solutions of Certain Plane Autonomous Systems , 1975, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[21]  F. Olver Asymptotics and Special Functions , 1974 .

[22]  E. Hille,et al.  8.—On a Class of Series Expansions in the Theory of Emden's Equation , 1973, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[23]  B. Malgrange Sur les points singuliers des équations différentielles , 1972 .

[24]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[25]  E. Hille,et al.  Some aspects of the Thomas-Fermi equation , 1970 .

[26]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[27]  Iwano Masahiro On a singular point of Briot-Bouquet type of a system of ordinary non-linear differential equations , 1963 .

[28]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[29]  E. C. Titchmarsh,et al.  The Laplace Transform , 1991, Heat Transfer 1.

[30]  H. Dulac Solutions d'un système d'équations différentielles dans le voisinage de valeurs singulières , 1912 .

[31]  J. Horn Gewöhnliche differentialgleichungen beliebiger ordnung , 1905 .