The physical limits of computing

Many of the fundamental limits on information processing, from thermodynamics, relativity, and quantum mechanics, are only a few decades away. Novel physically motivated computing paradigms, such as reversible computing and quantum computing, may help in certain ways, but even they remain subject to some basic limits. One can arrive at several firm conclusions regarding upper bounds on the limits of computing. In this article, the author only reviews the fundamental technology-independent limits.

[1]  N. Margolus Parallel Quantum Computation ∗ , 1990 .

[2]  Joseph F. Coates Visions of the Future: Physics and Electronics , 2002 .

[3]  Jeffrey A. Davis,et al.  The fundamental limit on binary switching energy for terascale integration (TSI) , 2000, IEEE Journal of Solid-State Circuits.

[4]  D. Evans Introduction to statistical mechanics and thermodynamics , 1984 .

[5]  Thomas F. Knight,et al.  Asymptotically Zero Energy Split-Level Charge Recovery Logic , 1994 .

[6]  N. Margolus,et al.  The maximum speed of dynamical evolution , 1997, quant-ph/9710043.

[7]  Andrew F. Rex,et al.  Maxwell's Demon, Entropy, Information, Computing , 1990 .

[8]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[9]  Ajay K. Royyuru,et al.  Blue Gene: A vision for protein science using a petaflop supercomputer , 2001, IBM Syst. J..

[10]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[11]  David Deutsch,et al.  Information flow in entangled quantum systems , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[13]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[14]  J. Bekenstein Universal upper bound on the entropy-to-energy ratio for bounded systems , 1981, Jacob Bekenstein.

[15]  Rolf Landauer,et al.  Minimal Energy Requirements in Communication , 1996, Science.

[16]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[17]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[18]  Carlin Vieri Reversible computer engineering and architecture , 1999 .

[19]  Helen Mayberg,et al.  Governing Board , 2003 .

[20]  Charles H. Bennett Notes on the history of reversible computation , 2000, IBM J. Res. Dev..

[21]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[22]  K. K. Likharev,et al.  Classical and quantum limitations on energy consumption in computation , 1982 .

[23]  Wojciech H. Zurek,et al.  Reversibility and stability of information processing systems , 1984 .

[24]  Thomas Beth,et al.  Are there quantum bounds on the recyclability of clock signals in low power computers , 2002 .

[25]  Michael P. Frank,et al.  Reversibility for efficient computing , 1999 .

[26]  David Deutsch,et al.  The fabric of reality : the science of parallel universes-- and its implications , 1997 .

[27]  Rolf Landauer,et al.  Information is Physical , 1991, Workshop on Physics and Computation.

[28]  M. Tosi Introduction to statistical mechanics and thermodynamics , 1997 .

[29]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[30]  Glenn D. Starkman,et al.  Life, the Universe, and Nothing: Life and Death in an Ever-expanding Universe , 1999, astro-ph/9902189.

[31]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[32]  D. Smithwds Classical Reversible Computation with Zero Lyapunov Exponent , 1999 .

[33]  F. Dyson Time without end: Physics and biology in an open universe , 1979 .

[34]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .