Fracture animation based on high-dimensional Voronoi diagrams

We propose a novel algorithm to simulate brittle fracture. It augments previous methods based on Voronoi diagrams, improving their versatility and their ability to adapt fracture patterns automatically to diverse collision scenarios and object properties. We cast brittle fracture as the computation of a high-dimensional Centroidal Voronoi Diagram (CVD), where the distribution of fracture fragments is guided by the deformation field of the fractured object. By formulating the problem in high dimensions, we support robustly object and crack concavities, as well as intuitive artist control. We further accelerate the fracture animation process with example-based learning of the fracture degree, and a highly parallel tessellation algorithm. As a result, we obtain fast animations of detailed and rich fractures, with fracture patterns that adapt to each particular collision scenario.

[1]  Luiz Velho,et al.  A Hierarchical Segmentation of Articulated Bodies , 2008, Comput. Graph. Forum.

[2]  Ronald Fedkiw,et al.  Arbitrary cutting of deformable tetrahedralized objects , 2007, SCA '07.

[3]  Maud Marchal,et al.  Efficient collision detection for brittle fracture , 2012, SCA '12.

[4]  Maud Marchal,et al.  Real-Time Simulation of Brittle Fracture Using Modal Analysis , 2013, IEEE Transactions on Visualization and Computer Graphics.

[5]  Markus H. Gross,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2006) Fast Arbitrary Splitting of Deforming Objects , 2022 .

[6]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[7]  Jagnow Robert Carl,et al.  Real-time simulation of deformation and fracture of stiff materials , 2001 .

[8]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[9]  David S. Ebert,et al.  Visualization and computer graphics , 2007 .

[10]  Doug L. James,et al.  Rigid-body fracture sound with precomputed soundbanks , 2010, ACM Trans. Graph..

[11]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[12]  Ronald Fedkiw,et al.  Energy stability and fracture for frame rate rigid body simulations , 2009, SCA '09.

[13]  Markus H. Gross,et al.  A state machine for real-time cutting of tetrahedral meshes , 2004, Graph. Model..

[14]  Thomas A. Funkhouser,et al.  Interior Distance Using Barycentric Coordinates , 2009, Comput. Graph. Forum.

[15]  Ronald Fedkiw,et al.  A virtual node algorithm for changing mesh topology during simulation , 2004, SIGGRAPH 2004.

[16]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[17]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[18]  Doug L. James,et al.  Rigid-body fracture sound with precomputed soundbanks , 2010, ACM Trans. Graph..

[19]  Eftychios Sifakis,et al.  Geometric fracture modeling in Bolt , 2009, SIGGRAPH '09.

[20]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[22]  Saty Raghavachary,et al.  Fracture generation on polygonal meshes using Voronoi polygons , 2002, SIGGRAPH '02.

[23]  Guoping Wang,et al.  Meshless simulation of brittle fracture , 2011, Comput. Animat. Virtual Worlds.

[24]  James F. O'Brien,et al.  Real-time deformation and fracture in a game environment , 2009, SCA '09.

[25]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[26]  Jessica K. Hodgins,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH.

[27]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[28]  Ronald Fedkiw,et al.  Fracturing Rigid Materials , 2007, IEEE Transactions on Visualization and Computer Graphics.

[29]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[30]  Robert A. Hummel,et al.  Exploiting Triangulated Surface Extraction Using Tetrahedral Decomposition , 1995, IEEE Trans. Vis. Comput. Graph..

[31]  Ronald Fedkiw,et al.  A virtual node algorithm for changing mesh topology during simulation , 2004, ACM Trans. Graph..

[32]  Nuttapong Chentanez,et al.  Real time dynamic fracture with volumetric approximate convex decompositions , 2013, ACM Trans. Graph..