Consistent estimation of multiple parameters from MODIS top of atmosphere reflectance data using a coupled soil-canopy-atmosphere radiative transfer model

Abstract Traditional methods usually estimate individual land surface parameters separately from surface reflectance data, a practice which requires atmospheric correction for top of atmosphere (TOA) reflectance and may result in physical inconsistency among parameters. This paper proposes a new method for consistent estimation of multiple land surface parameters and aerosol optical depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) TOA reflectance data. Soil, vegetation canopy, and atmospheric radiative transfer models were coupled, and a global sensitivity analysis of the coupled model was performed to identify the influential parameters from satellite observations. The most influential parameters, including leaf area index (LAI) and aerosol optical depth (AOD), were simultaneously retrieved from MODIS TOA reflectance data and then provided as input to the coupled soil-canopy-atmosphere radiative transfer model to calculate land surface reflectance, incident photosynthetically active radiation (PAR), land surface albedo, and the fraction of absorbed photosynthetically active radiation (FAPAR). The retrieved land surface parameters and AOD were compared with the corresponding MODIS, Global Land Surface Satellite (GLASS), GEOV1, and Multi-angle Imaging Spectroradiometer (MISR) products and validated by ground measurements from seven sites with different vegetation types. The results demonstrate that the new inversion method can effectively produce multiple physically consistent parameters with accuracy comparable to that of existing satellite products over the select sites.

[1]  A. Kuusk A two-layer canopy reflectance model , 2001 .

[2]  S. Tarantola,et al.  Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1 - Theoretical approach , 2002 .

[3]  W. Verhoef,et al.  Estimating forest variables from top-of-atmosphere radiance satellite measurements using coupled radiative transfer models , 2011 .

[4]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[5]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[6]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[7]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. , 2006, Applied optics.

[8]  W. Verhoef,et al.  Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data , 2007 .

[9]  G. Campbell,et al.  Simple equation to approximate the bidirectional reflectance from vegetative canopies and bare soil surfaces. , 1985, Applied optics.

[10]  Jindi Wang,et al.  A Framework for Consistent Estimation of Leaf Area Index, Fraction of Absorbed Photosynthetically Active Radiation, and Surface Albedo from MODIS Time-Series Data , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Jerry Y. Pan,et al.  Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network , 2012 .

[12]  Wout Verhoef,et al.  Simulation of Sentinel-3 images by four-stream surface-atmosphere radiative transfer modeling in the optical and thermal domains , 2012 .

[13]  A. Kuusk A fast, invertible canopy reflectance model , 1995 .

[14]  W. Verhoef,et al.  Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models , 2003 .

[15]  J. Ross The radiation regime and architecture of plant stands , 1981, Tasks for vegetation sciences 3.

[16]  A. Kuusk A multispectral canopy reflectance model , 1994 .

[17]  Jindi Wang,et al.  Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product From Time-Series MODIS Surface Reflectance , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Frédéric Baret,et al.  On spectral estimates of fresh leaf biochemistry , 1998 .

[19]  Shunlin Liang,et al.  Direct estimation of land surface albedo from VIIRS data: Algorithm improvement and preliminary validation , 2013 .

[20]  Qiang Liu,et al.  Mapping spatially-temporally continuous shortwave albedo for global land surface from MODIS data , 2012 .

[21]  Bernard Pinty,et al.  Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging , 1998, IEEE Trans. Geosci. Remote. Sens..

[22]  Shunlin Liang,et al.  Recent developments in estimating land surface biogeophysical variables from optical remote sensing , 2007 .

[23]  S. Liang,et al.  Assessment of five global satellite products of fraction of absorbed photosynthetically active radiation: Intercomparison and direct validation against ground-based data , 2015 .

[24]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[25]  Jindi Wang,et al.  Advanced remote sensing : terrestrial information extraction and applications , 2012 .

[26]  Xiaobin Zhu,et al.  Using the Shuffled Complex Evolution Global Optimization Method to Solve Groundwater Management Models , 2006, APWeb.

[27]  W. Verhoef,et al.  Global sensitivity analysis of the spectral radiance of a soil-vegetation system , 2014 .

[28]  Hongliang Fang,et al.  Retrieving leaf area index with a neural network method: simulation and validation , 2003, IEEE Trans. Geosci. Remote. Sens..

[29]  Aleixandre Verger,et al.  ntercomparison and quality assessment of MERIS , MODIS and SEVIRI FAPAR roducts over the Iberian Peninsula , 2012 .

[30]  S. Running,et al.  Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active , 1998 .

[31]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[32]  G. Campbell Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution , 1986 .

[33]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[34]  J. C. Price On the information content of soil reflectance spectra , 1990 .

[35]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[36]  S. Liang Narrowband to broadband conversions of land surface albedo I Algorithms , 2001 .

[37]  Frédéric Baret,et al.  GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production , 2013 .

[38]  Hongliang Fang,et al.  Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data , 2006 .

[39]  Y. Kaufman,et al.  Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery , 1988 .

[40]  J. Chen,et al.  Global mapping of foliage clumping index using multi-angular satellite data , 2005 .

[41]  Peter R. J. North,et al.  Retrieval of land surface bidirectional reflectance and aerosol opacity from ATSR-2 multiangle imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[42]  Hongliang Fang,et al.  Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods , 2001, IEEE Trans. Geosci. Remote. Sens..

[43]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[44]  Yujie Wang,et al.  Atmospheric Correction at AERONET Locations: A New Science and Validation Data Set , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Wenhan Qin,et al.  A fast, accurate algorithm to account for non‐Lambertian surface effects on TOA radiance , 2001 .

[46]  J. Townshend,et al.  A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies , 2013 .

[47]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[48]  Suhong Liu,et al.  Direct-Estimation Algorithm for Mapping Daily Land-Surface Broadband Albedo From MODIS Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Philip Lewis,et al.  An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest , 2011 .

[50]  Y. Knyazikhin,et al.  Validation and intercomparison of global Leaf Area Index products derived from remote sensing data , 2008 .

[51]  Yong Xue,et al.  Retrieval of aerosol optical depth and surface reflectance over land from NOAA AVHRR data , 2013 .

[52]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[53]  Shunlin Liang,et al.  A direct algorithm for estimating land surface broadband albedos from MODIS imagery , 2003, IEEE Trans. Geosci. Remote. Sens..

[54]  Guangming Shi,et al.  Retrieval of Atmospheric Aerosol and Surface Properties Over Land Using Satellite Observations , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[55]  S. Ustin,et al.  Estimating leaf biochemistry using the PROSPECT leaf optical properties model , 1996 .

[56]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[57]  A. Kuusk,et al.  A reflectance model for the homogeneous plant canopy and its inversion , 1989 .

[58]  Lorraine Remer,et al.  MISR Aerosol Product Attributes and Statistical Comparisons With MODIS , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[59]  A. Kuusk A Markov chain model of canopy reflectance , 1995 .

[60]  Huili Gong,et al.  Sensitivity Analysis of Vegetation Reflectance to Biochemical and Biophysical Variables at Leaf, Canopy, and Regional Scales , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[61]  W. Verhoef Earth observation modelling based on layer scattering matrices , 1984 .

[62]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[63]  H. Fang,et al.  Estimation of direct, diffuse, and total FPARs from Landsat surface reflectance data and ground‐based estimates over six FLUXNET sites , 2015 .

[64]  Didier Tanré,et al.  Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data , 1988 .

[65]  A. Strahler,et al.  Global clumping index map derived from the MODIS BRDF product , 2012 .

[66]  Frédéric Baret,et al.  Simultaneous determination of aerosol- and surface characteristics from top-of-atmosphere reflectance using MERIS on board of ENVISAT , 2006 .

[67]  Philip Watts,et al.  Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 1. Theory , 2010 .

[68]  W. Verhoef,et al.  A Bayesian object based approach for estimating vegetation biophysical and biochemical variables from APEX at sensor radiance data , 2013 .

[69]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[70]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[71]  Qiang Liu,et al.  Preliminary evaluation of the long-term GLASS albedo product , 2013 .

[72]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[73]  A. Saltelli,et al.  An alternative way to compute Fourier amplitude sensitivity test (FAST) , 1998 .

[74]  Yujie Wang,et al.  AERONET-based surface reflectance validation network (ASRVN) data evaluation: Case study for railroad valley calibration site , 2011 .

[75]  S. Liang,et al.  Validation of MODIS and CYCLOPES LAI products using global field measurement data , 2012 .