Cements Made From Blastfurnace Slag

Abstract Blastfurnace slag, BFS, is a non-metallic product which consists essentially of silicates and aluminosilicates of calcium. Blastfurnace slag has found a considerable use in the road and building industries, in the production of cementing materials, as an aggregate in concrete and tarmacadam, in the production of light-weight aggregate and in the manufacture of slag wool for thermal insulation.

[1]  An electron optical examination of zoning in blastfurnace slag hydrates: Part I. Slag cement pastes at early ages , 1989 .

[2]  Rupert J. Myers,et al.  Phase diagrams for alkali-activated slag binders , 2017 .

[3]  D. Bentz,et al.  Kinetics of Slag Hydration in the Presence of Calcium Hydroxide , 2002 .

[4]  G. Saoût,et al.  Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO , 2011 .

[5]  John J. Emery,et al.  Glass Content Determination and Strength Development Predictions for Vitrified Blast Furnace Slag , 1983 .

[6]  E. Lachowski,et al.  Densification and Migration of Ions in Blast Furnace Slag-Portland Cement Pastes , 1988 .

[7]  K. Luke,et al.  Internal chemical evolution of the constitution of blended cements , 1988 .

[8]  Göran Fagerlund The influence of slag cement on the frost resistance of the hardened concrete , 1982 .

[9]  J. Bullard A three-dimensional microstructural model of reactions and transport in aqueous mineral systems , 2007 .

[10]  K. Scrivener,et al.  29Si and 27Al NMR study of alkali-activated slag , 2003 .

[11]  Shashank Bishnoi,et al.  µic: A New Platform for Modelling the Hydration of Cements , 2009 .

[12]  P. Navi,et al.  Simulation of Effects of Small Inert Grains on Cement Hydration and Its Contact Surfaces , 1996 .

[13]  E. Reardon,et al.  An ion interaction model for the determination of chemical equilibria in cement/water systems , 1990 .

[14]  J. Torrenti,et al.  Simulated microstructure and transport properties of ultra-high performance cement-based materials , 2000 .

[15]  Arnault Lassin,et al.  Chemical model for cement-based materials: Temperature dependence of thermodynamic functions for nanocrystalline and crystalline C–S–H phases , 2010 .

[16]  Francisca Puertas,et al.  Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate , 2004 .

[17]  K. Scrivener,et al.  Hydration products of alkali activated slag cement , 1995 .

[18]  I. Richardson,et al.  Composition and Microstructure of 20-year-old Ordinary Portland Cement-ground Granulated Blast-furnace Slag Blends Containing 0 to 100% Slag , 2010 .

[19]  Fredrik P. Glasser,et al.  A thermodynamic model for blended cements. II: Cement hydrate phases; thermodynamic values and modelling studies , 1992 .

[20]  Wei Chen,et al.  Three-dimensional computer modeling of slag cement hydration , 2007 .

[21]  R. Mikhail,et al.  Morphology and microstructure of autoclaved clinker and slag-lime pastes in presence and in absence of silica sand , 1977 .

[22]  Fredrik P. Glasser,et al.  A thermodynamic model for blended cements , 1992 .

[23]  S. Kamali-Bernard,et al.  Effect of tensile cracking on diffusivity of mortar: 3D numerical modelling , 2009 .

[24]  J. Frearson Sulfate Resistance of Combinations of Portland Cement and Ground Granulated Blast Furnace Slag , 1986 .

[25]  S. Bernal,et al.  Structural evolution of an alkali sulfate activated slag cement , 2016 .

[26]  H. Hilsdorf,et al.  Formation of Silica gel During Carbonation of Cementitious Systems Containing Slag Cements , 1989, "SP-114: Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete: Proceedings of the Third International Conference".

[27]  Hamlin M. Jennings,et al.  Pore solution chemistry of alkali-activated ground granulated blast-furnace slag , 1999 .

[28]  Siham Kamali-Bernard,et al.  3D multi-scale modelling of mechanical behaviour of sound and leached mortar , 2008 .

[29]  Xinyuan Ke,et al.  Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides , 2016 .

[30]  Tatsuhiko Saeki,et al.  A model to predict the amount of calcium hydroxide in concrete containing mineral admixtures , 2005 .

[31]  F. Glasser,et al.  Cement hydrate phase: Solubility at 25C , 1992 .

[32]  R. Kondo,et al.  Studies on a Method to Determine the Amount of Granulated Blastfurnace Slag and the Rate of Hydration of Slag in Cements , 1969 .

[33]  C. L. Page,et al.  Aspects of the pore solution chemistry of blended cements related to the control of alkali silica reaction , 1987 .

[34]  M. Moranville,et al.  Material and Environmental Parameter Effects on the Leaching of Cement Pastes: Experiments and Modelling , 2008 .

[35]  M. Bouasker,et al.  Contribution to the modeling of hydration and chemical shrinkage of slag-blended cement at early age , 2013 .

[36]  P Longuet PROTECTION DES ARMATURES DANS LE BETON ARME ELABORE AVEC DES CIMENTS DE LAITIER , 1976 .

[37]  Geert De Schutter,et al.  Hydration and temperature development of concrete made with blast-furnace slag cement. , 1999 .

[38]  P. Brown,et al.  Calorimetric Study of Cement Blends Containing Fly Ash, Silica Fume, and Slag at Elevated Temperatures , 1994 .

[39]  Dale P. Bentz,et al.  Influence of silica fume on diffusivity in cement-based materials: I. Experimental and computer modeling studies on cement pastes , 2000 .

[40]  Werner Lutze,et al.  Scientific basis for nuclear waste management , 1979 .

[41]  B. Lothenbach,et al.  Hydration of alkali-activated slag: thermodynamic modelling , 2007 .

[42]  H. Manzano,et al.  A model for the C-A-S-H gel formed in alkali-activated slag cements , 2011 .

[43]  I. Richardson Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume , 2004 .

[44]  F. Puertas,et al.  Determination of Kinetic Equations of Alkaline Activation of Blast Furnace Slag by Means of Calorimetric Data , 1998 .

[45]  Arnault Lassin,et al.  Chemical model for cement-based materials: Thermodynamic data assessment for phases other than C–S–H , 2010 .

[46]  Hjh Jos Brouwers,et al.  Modelling of chloride binding related to hydration products in slag-blended cements , 2014 .

[47]  T. Matschei,et al.  Hydration behaviour of sulphate-activated slag cements , 2005 .

[48]  C. Warren,et al.  The solubility of ettringite at 25°C , 1994 .

[49]  G. Litvan,et al.  Carbonation of Granulated Blast Furnace Slag Cement Concrete During Twenty Years of Field Exposure , 1986 .

[50]  Fredrik P. Glasser,et al.  The Chemical Environment in Cement Matrices , 1985 .

[51]  B. Lothenbach,et al.  Hydration mechanisms of super sulphated slag cement , 2008 .

[52]  F. P. Glasser,et al.  The magnesia–silica gel phase in slag cements: alkali (K, Cs) sorption potential of synthetic gels , 2005 .

[53]  D. Bentz Three-Dimensional Computer Simulation of Portland Cement Hydration and Microstructure Development , 1997 .

[54]  Barbara Lothenbach,et al.  Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O , 2007 .

[55]  J. Sharp,et al.  The microstructure and mechanical properties of blended cements hydrated at various temperatures , 2001 .