Quantum Error Correction of Time-correlated Errors

The complexity of the error correction circuitry forces us to design quantum error correction codes capable of correcting a single error per error correction cycle. Yet, time-correlated error are common for physical implementations of quantum systems; an error corrected during the previous cycle may reoccur later due to physical processes specific for each physical implementation of the qubits. In this paper, we study quantum error correction for a restricted class of time-correlated errors in a spin-boson model. The algorithm we propose allows the correction of two errors per error correction cycle, provided that one of them is time-correlated. The algorithm can be applied to any stabilizer code when the two logical qubits $$\mid {\rm 0}_L \rangle$$ and $$\mid {\rm 1}_L \rangle$$ are entangled states of 2n basis states in $${\mathcal{H}}_{2^n}$$ .

[1]  H. Baranger,et al.  Decoherence by correlated noise and quantum error correction. , 2005, Physical review letters.

[2]  J. Preskill Fault-tolerant quantum computation , 1997, quant-ph/9712048.

[3]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[4]  Rochus Klesse,et al.  Quantum error correction in spatially correlated quantum noise. , 2005, Physical review letters.

[5]  Lov K. Grover,et al.  Fixed-point quantum search. , 2005, Physical review letters.

[6]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[7]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[8]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  J. Gea-Banacloche,et al.  Quantum error correction against correlated noise , 2004 .

[10]  Lov K. Grover,et al.  Quantum error correction of systematic errors using a quantum search framework , 2005 .

[11]  C Langer,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[12]  Resilient quantum computation in correlated environments: a quantum phase transition perspective. , 2006, Physical review letters.

[13]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[14]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[15]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[16]  Michal Horodecki,et al.  Dynamical description of quantum computing: Generic nonlocality of quantum noise , 2002 .

[17]  H. Briegel,et al.  Fast simulation of stabilizer circuits using a graph-state representation , 2005, quant-ph/0504117.

[18]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[19]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[21]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[22]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[23]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[24]  Michael A. Nielsen,et al.  Noise thresholds for optical cluster-state quantum computation (26 pages) , 2006 .

[25]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[26]  H. Cheong,et al.  Coherent manipulation of electronic States in a double quantum dot. , 2003, Physical review letters.