Creating large Fock states and massively squeezed states in optics using systems with nonlinear bound states in the continuum

Significance The quantization of the electromagnetic field leads directly to the existence of quantum mechanical states, called Fock states, with an exact integer number of photons. Despite these fundamental states being long understood, and despite their many potential applications, generating them is largely an open problem. As a result, large Fock states are considered a type of “holy grail” for quantum science and technology. In this work, we predict the existence of an effect in nonlinear optics that enables the deterministic generation of large Fock states at arbitrary frequencies, using standard lasers and nanostructured optical components—which may enable all of the envisaged applications of these elusive states in quantum science and technology.

[1]  Trevor Vincent,et al.  Quantum computational advantage with a programmable photonic processor , 2022, Nature.

[2]  J. Vučković,et al.  All optical switching in a silicon nonlinear Fano resonator , 2022, 2022 Conference on Lasers and Electro-Optics (CLEO).

[3]  K. Murch,et al.  Engineered dissipation for quantum information science , 2022, Nature Reviews Physics.

[4]  Q. Guo,et al.  Few-cycle vacuum squeezing in nanophotonics , 2022, Science.

[5]  Aref Rasoulzadeh Zali,et al.  Ultra-coherent Fano laser based on a bound state in the continuum , 2021, Nature Photonics.

[6]  L. Pfeiffer,et al.  Polariton Bose–Einstein condensate from a bound state in the continuum , 2021, Nature.

[7]  M. Segev,et al.  Imprinting the quantum statistics of photons on free electrons , 2021, 2021 Conference on Lasers and Electro-Optics (CLEO).

[8]  F. Nori,et al.  Topological dissipation in a time-multiplexed photonic resonator network , 2021, Nature Physics.

[9]  A. Szameit,et al.  Nonlinear tuning of PT symmetry and non-Hermitian topological states , 2021, Science.

[10]  A. Lita,et al.  Quantum circuits with many photons on a programmable nanophotonic chip , 2021, Nature.

[11]  A. Clerk,et al.  Dissipative Stabilization of Squeezing Beyond 3 dB in a Microwave Mode , 2021, 2102.02863.

[12]  Jian-Wei Pan,et al.  Quantum computational advantage using photons , 2020, Science.

[13]  I. Kaminer,et al.  Shaping quantum photonic states using free electrons , 2020, Science Advances.

[14]  Thanh Long Nguyen,et al.  Error correction of a logical grid state qubit by dissipative pumping , 2020, Nature Physics.

[15]  P. Solano,et al.  Deterministic Generation of Large Fock States. , 2020, Physical review letters.

[16]  I. Kaminer,et al.  Light–matter interactions with photonic quasiparticles , 2020, Nature Reviews Physics.

[17]  Amin Arbabian,et al.  Inverse-designed non-reciprocal pulse router for chip-based LiDAR , 2020 .

[18]  H. Carmichael,et al.  Bright Sub-Poissonian Light through Intrinsic Feedback and External Control. , 2020, Physical review letters.

[19]  B. Morrison,et al.  Squeezed light from a nanophotonic molecule , 2020, Nature Communications.

[20]  Proceedings of SPIE,et al.  Quantum Optics , 2019, Problems and Solutions on Optics.

[21]  Jacob C. Curtis,et al.  Efficient Multiphoton Sampling of Molecular Vibronic Spectra on a Superconducting Bosonic Processor , 2019, Physical Review X.

[22]  A. Polman,et al.  Electron-beam spectroscopy for nanophotonics , 2019, Nature Materials.

[23]  F. D. de Abajo,et al.  Probing quantum optical excitations with fast electrons , 2019, 1905.06887.

[24]  Fabio Sciarrino,et al.  Photonic implementation of boson sampling: a review , 2019, Advanced Photonics.

[25]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[26]  O. Kfir Entanglements of Electrons and Cavity Photons in the Strong-Coupling Regime. , 2019, Physical review letters.

[27]  M. Miri,et al.  Exceptional points in optics and photonics , 2019, Science.

[28]  Y. Kivshar,et al.  Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum. , 2018, Physical review letters.

[29]  Mazyar Mirrahimi,et al.  Stabilized Cat in a Driven Nonlinear Cavity: A Fault-Tolerant Error Syndrome Detector , 2018, Physical Review X.

[30]  S. Yelin,et al.  Quantum Nonlinear Optics in Atomically Thin Materials. , 2018, Physical review letters.

[31]  H. Mabuchi,et al.  Adiabatic Fock State Generation Scheme Using Kerr Nonlinearity , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[32]  Christian Schneider,et al.  Towards polariton blockade of confined exciton–polaritons , 2018, Nature Materials.

[33]  A. Lemaître,et al.  Emergence of quantum correlations from interacting fibre-cavity polaritons , 2017, Nature Materials.

[34]  Yuri S. Kivshar,et al.  Fano resonances in photonics , 2017, Nature Photonics.

[35]  Lan Yang,et al.  Exceptional points enhance sensing in an optical microcavity , 2017, Nature.

[36]  J. You,et al.  Bistability of Cavity Magnon Polaritons. , 2017, Physical review letters.

[37]  C. Schneider,et al.  Signatures of a dissipative phase transition in photon correlation measurements , 2017, 1707.01837.

[38]  Christian Schneider,et al.  High-efficiency multiphoton boson sampling , 2017, Nature Photonics.

[39]  Susumu Noda,et al.  Photonic crystal nanocavity with a Q factor exceeding eleven million. , 2017, Optics express.

[40]  Igor Jex,et al.  Gaussian Boson sampling , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[41]  Liang Jiang,et al.  Implementing a universal gate set on a logical qubit encoded in an oscillator , 2016, Nature Communications.

[42]  J. Cirac,et al.  Efficient Multiphoton Generation in Waveguide Quantum Electrodynamics. , 2016, Physical review letters.

[43]  Gerd Leuchs,et al.  30 years of squeezed light generation , 2015, 1511.03250.

[44]  G. Guerreschi,et al.  Boson sampling for molecular vibronic spectra , 2014, Nature Photonics.

[45]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[46]  A. Lemaître,et al.  Polariton-generated intensity squeezing in semiconductor micropillars , 2014, Nature Communications.

[47]  R. Bowler,et al.  Dissipative production of a maximally entangled steady state of two quantum bits , 2013, Nature.

[48]  Alexander Y. Piggott,et al.  Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity , 2013, 1307.3601.

[49]  T. Ralph,et al.  Boson sampling from a Gaussian state. , 2013, Physical review letters.

[50]  Brian J. Smith,et al.  Experimental generation of multi-photon Fock states. , 2012, Optics express.

[51]  M. Lukin,et al.  Quantum nonlinear optics with single photons enabled by strongly interacting atoms , 2012, Nature.

[52]  Mazyar Mirrahimi,et al.  Real-time quantum feedback prepares and stabilizes photon number states , 2011, Nature.

[53]  T. Wilk,et al.  Three-photon correlations in a strongly driven atom-cavity system. , 2011, Physical review letters.

[54]  S. Aaronson,et al.  The computational complexity of linear optics , 2010, Theory Comput..

[55]  Brian J. Smith,et al.  Real-world quantum sensors: evaluating resources for precision measurement. , 2010, Physical review letters.

[56]  Erik Lucero,et al.  Generation of Fock states in a superconducting quantum circuit , 2008, Nature.

[57]  Philippe Grangier,et al.  Generation of optical ‘Schrödinger cats’ from photon number states , 2007, Nature.

[58]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[59]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[60]  E. Diamanti,et al.  Direct observation of nonclassical photon statistics in parametric down-conversion. , 2003, Physical review letters.

[61]  J. Joannopoulos,et al.  Temporal coupled-mode theory for the Fano resonance in optical resonators. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[62]  Shanhui Fan,et al.  Analysis of guided resonances in photonic crystal slabs , 2002 .

[63]  H. Walther,et al.  Preparing pure photon number states of the radiation field , 2000, Nature.

[64]  F. Konig,et al.  Photon-Number Squeezed Solitons from an Asymmetric Fiber-Optic Sagnac Interferometer , 1998 .

[65]  Holger Schmidt,et al.  Strongly Interacting Photons in a Nonlinear Cavity , 1997 .

[66]  Machida,et al.  Observation of Optical Soliton Photon-Number Squeezing. , 1996, Physical review letters.

[67]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[68]  Kilin,et al.  Fock state generation by the methods of nonlinear optics. , 1995, Physical review letters.

[69]  A Yariv,et al.  Amplitude noise reduction in semiconductor lasers with weak, dispersive optical feedback. , 1994, Optics letters.

[70]  H. Haus,et al.  Squeezing in fibers with optical pulses. , 1991, Optics letters.

[71]  Walther,et al.  Observation of sub-Poissonian photon statistics in a micromaser. , 1990, Physical review letters.

[72]  M. Teich,et al.  Squeezed state of light , 1989 .

[73]  G. Björk,et al.  Generation of number-phase minimum-uncertainty states and number states , 1987 .

[74]  C. Gardiner,et al.  Input and output in damped quantum systems. II. Methods in non-white-noise situations and application to inhibition of atomic phase decays , 1987 .

[75]  H. Haus Waves and fields in optoelectronics , 1983 .

[76]  D. Walls,et al.  Quantum theory of optical bistability. I. Nonlinear polarisability model , 1980 .

[77]  V. Braginskii,et al.  Quantum-mechanical limitations in macroscopic experiments and modern experimental technique , 1975 .

[78]  Frank H. Stillinger,et al.  Bound states in the continuum , 1975 .

[79]  R. Bonifacio,et al.  Quantum Statistical Theory of Superradiance. II , 1971 .

[80]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[81]  David Brink,et al.  : A Review of the , 2018 .

[82]  G. Jensen,et al.  Single Photon Sources , 2008 .

[83]  K. Vahala Optical microcavities , 2003, Nature.

[84]  R. Tanas,et al.  Fock states generation in a kicked cavity with a nonlinear medium , 1997 .

[85]  Luiz Davidovich,et al.  Sub-Poissonian processes in quantum optics , 1996 .

[86]  Hermann A. Haus,et al.  Squeezing of pulses in a nonlinear interferometer , 1990 .