Quantum optical micro-combs

120 words) A key challenge for quantum science and technology is to realise large-scale, precisely controllable, practical systems for non-classical secured communications, metrology and ultimately meaningful quantum simulation and computation. Optical frequency combs represent a powerful approach towards this, since they provide a very high number of temporal and frequency modes which can result in large-scale quantum systems. The generation and control of quantum optical frequency combs will enable a unique, practical and scalable framework for quantum signal and information processing. Here, we review recent progress on the realization of energy-time entangled optical frequency combs and discuss how photonic integration and the use of fiber-optic telecommunications components can enable quantum state control with new functionalities, yielding unprecedented capability.

[1]  Poolad Imany,et al.  A controlled-NOT gate for frequency-bin qubits , 2018, npj Quantum Information.

[2]  T. J. Weinhold,et al.  Hectometer Revivals of Quantum Interference , 2019, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[3]  Raman Kashyap,et al.  High-dimensional one-way quantum processing implemented on d-level cluster states , 2018, Nature Physics.

[4]  M. Lipson,et al.  Battery-operated integrated frequency comb generator , 2018, Nature.

[5]  Ronald Hanson,et al.  Quantum technologies with optically interfaced solid-state spins , 2018, Nature Photonics.

[6]  Andrew M. Weiner,et al.  Frequency-domain Hong-Ou-Mandel interference with linear optics. , 2018, Optics letters.

[7]  Guang-Can Guo,et al.  On-chip generation of time-and wavelength-division multiplexed multiple time-bin entanglement. , 2018, Optics express.

[8]  D.-L. Kwong,et al.  Dissipative Kerr Soliton mode-locking and breather states in 19 GHz Si3N4 microresonator , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[9]  Joseph M. Lukens,et al.  Deterministic optical quantum logic with multiple high-dimensional degrees of freedom in a single photon , 2018 .

[10]  Nicholas A. Peters,et al.  Controllable two-photon interference with versatile quantum frequency processor , 2018, 1803.10712.

[11]  Gerardo Adesso,et al.  Gaussian quantum resource theories , 2018, Physical Review A.

[12]  Pavel Lougovski,et al.  Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing. , 2017, Physical review letters.

[13]  John M Donohue,et al.  Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs. , 2017, Physical review letters.

[14]  Andrew M. Weiner,et al.  Characterization of coherent quantum frequency combs using electro-optic phase modulation , 2017, 1709.05274.

[15]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[16]  R. Morandotti,et al.  Micro-combs: A novel generation of optical sources , 2017 .

[17]  Daniel J Gauthier,et al.  Provably secure and high-rate quantum key distribution with time-bin qudits , 2017, Science Advances.

[18]  Roberto Morandotti,et al.  Practical system for the generation of pulsed quantum frequency combs. , 2017, Optics express.

[19]  R. Morandotti,et al.  Integrated sources of photon quantum states based on nonlinear optics , 2017, Light: Science & Applications.

[20]  Y. Cai,et al.  Multimode entanglement in reconfigurable graph states using optical frequency combs , 2017, Nature Communications.

[21]  W Tittel,et al.  Heralded Single Photons Based on Spectral Multiplexing and Feed-Forward Control. , 2017, Physical review letters.

[22]  Brian J. Smith,et al.  Bandwidth manipulation of quantum light by an electro-optic time lens , 2016, Nature Photonics.

[23]  Xiang Guo,et al.  Parametric down-conversion photon-pair source on a nanophotonic chip , 2016, Light: Science & Applications.

[24]  Sven Ramelow,et al.  Frequency multiplexing for quasi-deterministic heralded single-photon sources , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[25]  Joseph M. Lukens,et al.  Frequency-encoded photonic qubits for scalable quantum information processing , 2016, 1612.03131.

[26]  Xiang Guo,et al.  Integrated optomechanical single-photon frequency shifter , 2016, Nature Photonics.

[27]  Kyunghun Han,et al.  High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation , 2016 .

[28]  Minghao Qi,et al.  Persistent energy-time entanglement covering multiple resonances of an on-chip biphoton frequency comb , 2016, 1611.03774.

[29]  Qin Wang,et al.  Realizing the measure-device-independent quantum-key-distribution with passive heralded-single photon sources , 2016, Scientific Reports.

[30]  Marco Bentivegna,et al.  High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip , 2016, 1609.00521.

[31]  Yu Shiozawa,et al.  Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing , 2016, 1606.06688.

[32]  Marc Sorel,et al.  Correlated photon pair generation in AlGaAs nanowaveguides via spontaneous four-wave mixing. , 2016, Optics express.

[33]  A. Gaeta,et al.  Ramsey Interference with Single Photons. , 2016, Physical review letters.

[34]  Masato Koashi,et al.  Frequency-domain Hong–Ou–Mandel interference , 2016, Nature Photonics.

[35]  Rafael N. Alexander,et al.  One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator , 2015, 1509.00484.

[36]  Damien Bonneau,et al.  Silicon Quantum Photonics , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[37]  J. Lukens,et al.  Optical quantum computing with spectral qubits , 2016 .

[38]  Roberto Morandotti,et al.  Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip , 2015, Nature Communications.

[39]  J. O'Brien,et al.  Qubit entanglement between ring-resonator photon-pair sources on a silicon chip , 2015, Nature Communications.

[40]  F. Wong,et al.  Harnessing high-dimensional hyperentanglement through a biphoton frequency comb , 2015, Nature Photonics.

[41]  W. Munro,et al.  Inside Quantum Repeaters , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[42]  C. Fabre,et al.  Full multipartite entanglement of frequency-comb Gaussian states. , 2014, Physical review letters.

[43]  N. Harris,et al.  Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems , 2014, 1409.8215.

[44]  Michael J. Strain,et al.  Micrometer-scale integrated silicon source of time-energy entangled photons , 2014, 1409.4881.

[45]  P. Xu,et al.  On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. , 2014, Physical review letters.

[46]  Carsten Langrock,et al.  Generation of biphoton correlation trains through spectral filtering. , 2014, Optics express.

[47]  Amir Dezfooliyan,et al.  Orthogonal spectral coding of entangled photons. , 2014, Physical review letters.

[48]  Olivier Pfister,et al.  Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. , 2013, Physical review letters.

[49]  C. Fabre,et al.  Wavelength-multiplexed quantum networks with ultrafast frequency combs , 2013, Nature Photonics.

[50]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[51]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[52]  Thomas Feurer,et al.  Shaping frequency entangled qudits , 2013, 1303.6202.

[53]  Benjamin J Eggleton,et al.  High-efficiency frequency conversion in the single-photon regime. , 2013, Optics letters.

[54]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[55]  C. M. Natarajan,et al.  Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. , 2012, Optics express.

[56]  M. Chekhova,et al.  A versatile source of single photons for quantum information processing , 2012, Nature Communications.

[57]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[58]  D. Ostrowsky,et al.  On the genesis and evolution of Integrated Quantum Optics , 2011, 1108.3162.

[59]  Kevin A O'Donnell Observations of dispersion cancellation of entangled photon pairs. , 2011, Physical review letters.

[60]  Andreas Christ,et al.  Probing multimode squeezing with correlation functions , 2010, 1012.0262.

[61]  J. Sipe,et al.  Spontaneous four-wave mixing in microring resonators. , 2010, Optics letters.

[62]  Michael Hochberg,et al.  Towards fabless silicon photonics , 2010 .

[63]  J. Eisert,et al.  Limitations of quantum computing with Gaussian cluster states , 2010, 1004.0081.

[64]  J M Kahn,et al.  Hiding single photons with spread spectrum technology. , 2010, Physical review letters.

[65]  Minghao Qi,et al.  Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper , 2010 .

[66]  Philippe Emplit,et al.  Frequency Bin Entangled Photons , 2009, 0910.1325.

[67]  Michal Lipson,et al.  CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects , 2010 .

[68]  Roberto Morandotti,et al.  CMOS-compatible integrated optical hyper-parametric oscillator , 2010 .

[69]  S. Harris,et al.  Observation of nonlocal modulation with entangled photons. , 2009, Physical review letters.

[70]  Nicolas J Cerf,et al.  No-go theorem for gaussian quantum error correction. , 2008, Physical review letters.

[71]  T Feurer,et al.  Amplitude and phase modulation of time-energy entangled two-photon states. , 2008, Optics express.

[72]  Shengwang Du,et al.  Electro-optic modulation of single photons. , 2008, Physical review letters.

[73]  Chunxin Yang,et al.  Compact 10 GHz loopback arrayed-waveguide grating for high-fidelity optical arbitrary waveform generation. , 2008, Optics letters.

[74]  Olivier Pfister,et al.  One-way quantum computing in the optical frequency comb. , 2008, Physical review letters.

[75]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[76]  M. Lipson,et al.  Generation of correlated photons in nanoscale silicon waveguides. , 2006, Optics express.

[77]  N. C. Menicucci,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[78]  N. Gisin,et al.  A photonic quantum information interface , 2005, Nature.

[79]  Yaron Silberberg,et al.  Temporal shaping of entangled photons. , 2005, Physical review letters.

[80]  A. Friesem,et al.  Nonlinear interactions with an ultrahigh flux of broadband entangled photons. , 2004, Physical review letters.

[81]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[82]  Z. Ou,et al.  Mode-locked two-photon states. , 2003, Physical review letters.

[83]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[84]  N. Gisin,et al.  PPLN waveguide for quantum communication , 2001, quant-ph/0107125.

[85]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[86]  Law,et al.  Continuous frequency entanglement: effective finite hilbert space and entropy control , 2000, Physical review letters.

[87]  A. Weiner Femtosecond pulse shaping using spatial light modulators , 2000 .

[88]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[89]  Z. Y. Ou,et al.  Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons , 1999 .

[90]  S. Lloyd,et al.  Quantum Computation over Continuous Variables , 1998, quant-ph/9810082.

[91]  Paul G. Kwiat,et al.  Hyper-entangled states , 1997 .

[92]  A. Weiner,et al.  Pulse shaping of incoherent light by use of a liquid crystal modulator array , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[93]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[94]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[95]  Franson,et al.  Bell inequality for position and time. , 1989, Physical review letters.

[96]  Hong,et al.  Theory of parametric frequency down conversion of light. , 1985, Physical review. A, General physics.