A strongly coupled predator-prey system with modified Holling-Tanner functional response

In this paper, a strongly coupled system of partial differential equations in a bounded domain with the homogeneous Neumann boundary condition which models a predator-prey system with modified Holling-Tanner functional response is considered. First, the authors study the stability of the positive constant solution. Sufficient conditions are derived for the global stability of the positive equilibrium by constructing a suitable Lyapunov function. By using the Leray-Schauder theorem, the authors prove a number of existence and non-existence results about the non-constant steady states of the system.

[1]  Robert M. May,et al.  Stability and Complexity in Model Ecosystems , 2019, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Chris Cosner,et al.  On the Dynamics of Predator–Prey Models with the Beddington–DeAngelis Functional Response☆ , 2001 .

[3]  Mingxin Wang,et al.  Qualitative Analysis of a Prey-Predator Model with Stage Structure for the Predator , 2008, SIAM J. Appl. Math..

[4]  Rui Peng,et al.  On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law , 2008 .

[5]  T. K. Kar,et al.  Modelling and analysis of a prey–predator system with stage-structure and harvesting , 2007 .

[6]  PETER A. BRAZA,et al.  The Bifurcation Structure of the Holling--Tanner Model for Predator-Prey Interactions Using Two-Timing , 2003, SIAM J. Appl. Math..

[7]  K D Farnsworth,et al.  How Do Grazers Achieve Their Distribution? A Continuum of Models from Random Diffusion to the Ideal Free Distribution Using Biased Random Walks , 1999, The American Naturalist.

[8]  Mingxin Wang Stationary patterns of strongly coupled prey–predator models , 2004 .

[9]  Mingxin Wang,et al.  Stationary Patterns Caused by Cross-Diffusion for a Three-Species Prey-Predator Model , 2006, Comput. Math. Appl..

[10]  Sze-Bi Hsu,et al.  A diffusive predator–prey model in heterogeneous environment , 2004 .

[11]  Rui Peng,et al.  Positive steady states of the Holling–Tanner prey–predator model with diffusion , 2005, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[12]  Mingxin Wang,et al.  Sharp spatial patterns of the diffusive Holling-Tanner prey-predator model in heterogeneous environment , 2008 .

[13]  Mingxin Wang,et al.  A strongly coupled predator–prey system with non-monotonic functional response ☆ , 2007 .

[14]  Rui Peng,et al.  Stationary patterns of the Holling-Tanner prey-predator model with diffusion and cross-diffusion , 2008, Appl. Math. Comput..

[15]  Rui Peng,et al.  Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model , 2007, Appl. Math. Lett..

[16]  Mingxin Wang,et al.  Global asymptotic stability of positive steady states of a diffusive ratio-dependent prey-predator model , 2008, Appl. Math. Lett..

[17]  Sze-Bi Hsu,et al.  Global Stability for a Class of Predator-Prey Systems , 1995, SIAM J. Appl. Math..

[18]  Yang Kuang,et al.  Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response , 2004 .

[19]  Wei-Ming Ni,et al.  Large amplitude stationary solutions to a chemotaxis system , 1988 .

[20]  Wonlyul Ko,et al.  Non-constant positive steady-states of a diffusive predator–prey system in homogeneous environment , 2007 .

[21]  G. Odell,et al.  Swarms of Predators Exhibit "Preytaxis" if Individual Predators Use Area-Restricted Search , 1987, The American Naturalist.

[22]  Zhiqi Lu,et al.  Analysis of a predator–prey model with modified Holling–Tanner functional response and time delay , 2008 .

[23]  Mingxin Wang,et al.  Non-constant positive steady states of the Sel'kov model ☆ , 2003 .

[24]  Mingxin Wang,et al.  Qualitative analysis of a diffusive variable-territory prey-predator model , 2008 .

[25]  Yuan Lou,et al.  DIFFUSION VS CROSS-DIFFUSION : AN ELLIPTIC APPROACH , 1999 .

[26]  James T. Tanner,et al.  THE STABILITY AND THE INTRINSIC GROWTH RATES OF PREY AND PREDATOR POPULATIONS , 1975 .

[27]  Yuan Lou,et al.  Diffusion, Self-Diffusion and Cross-Diffusion , 1996 .

[28]  Mingxin Wang,et al.  Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion , 2004 .

[29]  Mingxin Wang,et al.  Strategy and stationary pattern in a three-species predator–prey model , 2004 .

[30]  Tzy-Wei Hwang,et al.  Global analysis of the predator–prey system with Beddington–DeAngelis functional response , 2003 .

[31]  Kousuke Kuto,et al.  Positive steady states for a prey-predator model with some nonlinear diffusion terms , 2006 .

[32]  H. Bhadeshia Diffusion , 1995, Theory of Transformations in Steels.

[33]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[34]  Bin Chen,et al.  Qualitative analysis for a diffusive predator-prey model , 2008, Comput. Math. Appl..

[35]  Rui Peng,et al.  Stationary Pattern of a Ratio-Dependent Food Chain Model with Diffusion , 2007, SIAM J. Appl. Math..

[36]  Eduardo Sáez,et al.  Dynamics of a Predator-Prey Model , 1999, SIAM J. Appl. Math..