New insights into spatio-temporal dynamics of mesenchymal progenitor cell ingress during peri-implant wound healing: Provided by intravital imaging.

[1]  J. Davies,et al.  The Influence of Implant design on the Kinetics of Osseointegration and Bone Anchorage Homeostasis. , 2020, Acta biomaterialia.

[2]  F. Rossi,et al.  Pathogenic Potential of Hic1-Expressing Cardiac Stromal Progenitors. , 2020, Cell stem cell.

[3]  F. Rossi,et al.  Hic1 Defines Quiescent Mesenchymal Progenitor Subpopulations with Distinct Functions and Fates in Skeletal Muscle Regeneration. , 2019, Cell stem cell.

[4]  P. Frankland,et al.  Mesenchymal Precursor Cells in Adult Nerves Contribute to Mammalian Tissue Repair and Regeneration. , 2019, Cell stem cell.

[5]  J. Davies,et al.  Intravital Imaging for Tracking of Angiogenesis and Cellular Events Around Surgical Bone Implants. , 2018, Tissue engineering. Part C, Methods.

[6]  R. Adams,et al.  Spatiotemporal endothelial cell – pericyte association in tumors as shown by high resolution 4D intravital imaging , 2018, Scientific Reports.

[7]  J. Davies,et al.  Nanosurfaces modulate the mechanism of peri-implant endosseous healing by regulating neovascular morphogenesis , 2018, Communications Biology.

[8]  S. Pillai,et al.  Identification and characterization of a rich population of CD34+ mesenchymal stem/stromal cells in human parotid, sublingual and submandibular glands , 2017, Scientific Reports.

[9]  E. Masliah,et al.  Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. , 2017, Cell stem cell.

[10]  M. Xaymardan,et al.  Platelet-Derived Growth Factor Receptor Alpha as a Marker of Mesenchymal Stem Cells in Development and Stem Cell Biology , 2015, Stem cells international.

[11]  Paul Martin,et al.  Wound repair and regeneration: Mechanisms, signaling, and translation , 2014, Science Translational Medicine.

[12]  Aaron F. Cipriano,et al.  Anodic growth and biomedical applications of TiO2 nanotubes. , 2014, Journal of biomedical nanotechnology.

[13]  M. Nakatani,et al.  Identification and characterization of PDGFR a þ mesenchymal progenitors in human skeletal muscle , 2022 .

[14]  Lars Sennerby,et al.  Immediate loading of Brånemark system TiUnite and machined-surface implants in the posterior mandible, part II: a randomized open-ended 9-year follow-up clinical trial. , 2013, The International journal of oral & maxillofacial implants.

[15]  J. Davies,et al.  The roles of different scale ranges of surface implant topography on the stability of the bone/implant interface. , 2013, Biomaterials.

[16]  B. Al-Nawas,et al.  Early implant healing: promotion of platelet activation and cytokine release by topographical, chemical and biomimetical titanium surface modifications in vitro. , 2012, Clinical oral implants research.

[17]  O. Shupliakov,et al.  A Pericyte Origin of Spinal Cord Scar Tissue , 2011, Science.

[18]  P. Zengel,et al.  μ-Slide Chemotaxis: A new chamber for long-term chemotaxis studies , 2011, BMC Cell Biology.

[19]  J. Davies,et al.  Human Mesenchymal Stem Cells Self-Renew and Differentiate According to a Deterministic Hierarchy , 2009, PloS one.

[20]  Emeka Nkenke,et al.  In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[21]  S. Badylak,et al.  A perivascular origin for mesenchymal stem cells in multiple human organs. , 2008, Cell stem cell.

[22]  Patrik Schmuki,et al.  TiO2 nanotubes : Tailoring the geometry in H3PO4/HF electrolytes , 2006 .

[23]  Xueqian Wang,et al.  CNS Microvascular Pericytes Exhibit Multipotential Stem Cell Activity , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[24]  J. Davies,et al.  Platelet interactions with calcium-phosphate-coated surfaces. , 2005, Biomaterials.

[25]  C. Gemmell,et al.  Platelet interactions with titanium: modulation of platelet activity by surface topography. , 2001, Biomaterials.

[26]  Margaret A. Johns,et al.  Mice deficient in the candidate tumor suppressor gene Hic1 exhibit developmental defects of structures affected in the Miller-Dieker syndrome. , 2000, Human molecular genetics.

[27]  T. Testori,et al.  A human histologic analysis of osseotite and machined surfaces using implants with 2 opposing surfaces. , 1999, The International journal of periodontics & restorative dentistry.

[28]  R. Gutiérrez,et al.  Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. , 1992, Clinical orthopaedics and related research.

[29]  J. Davies,et al.  Tau (τ): A New Parameter to Assess the Osseointegration Potential of an Implant Surface. , 2017, The International journal of oral & maxillofacial implants.

[30]  J. Davies,et al.  Topographic scale-range synergy at the functional bone/implant interface. , 2014, Biomaterials.

[31]  S. Verbruggen,et al.  Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo , 2013, Angiogenesis.

[32]  J. Davies,et al.  Isolation, propagation, and characterization of human umbilical cord perivascular cells (HUCPVCs). , 2009, Methods in molecular biology.

[33]  J. Lausmaa,et al.  Adhesion and activation of platelets and polymorphonuclear granulocyte cells at TiO2 surfaces. , 1997, The Journal of laboratory and clinical medicine.