From quasisymmetric expansions to Schur expansions via a modified inverse Kostka matrix
暂无分享,去创建一个
[1] Jeffrey B. Remmel,et al. A computational and combinatorial exposé of plethystic calculus , 2011 .
[2] J Haglund. A combinatorial model for the Macdonald polynomials. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[3] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[4] I. Gessel. Multipartite P-partitions and inner products of skew Schur functions , 1983 .
[5] Gregory S. Warrington,et al. Nested Quantum Dyck Paths and ∇(sλ) , 2010 .
[6] Mei Yang,et al. Special Rim Hook Tabloids and Some New Multiplicity-Free S-Series , 1991, SIAM J. Discret. Math..
[7] Nicholas A. Loehr,et al. A combinatorial formula for Macdonald polynomials , 2005 .
[8] J. Remmel,et al. A combinatorial interpretation of the inverse kostka matrix , 1990 .
[9] Haibao Duan. On the inverse Kostka matrix , 2003, J. Comb. Theory, Ser. A.
[10] Edward A. Bender,et al. Enumeration of Plane Partitions , 1972, J. Comb. Theory A.
[11] Ernesto Vallejo,et al. Stability of Kronecker Products of Irreducible Characters of the Symmetric Group , 1999, Electron. J. Comb..