Modifying Faug\`ere's F5 Algorithm to ensure termination

The structure of the F5 algorithm to compute Gröbner bases makes it very efficient. However, it is not clear whether it terminates for all inputs, not even for "regular sequences". This paper has two major parts. In the first part, we describe in detail the difficulties related to a proof of termination. In the second part, we explore three variants that ensure termination. Two of these have appeared previously in dissertations, and ensure termination by checking for a Gröbner basis using traditional criteria. The third variant, F5+, identifies a degree bound using a distinction between "necessary" and "redundant" critical pairs that follows from the analysis in the first part. Experimental evidence suggests this third approach is the most efficient of the three.

[1]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[2]  Rüdiger Gebauer,et al.  On an Installation of Buchberger's Algorithm , 1988, J. Symb. Comput..

[3]  Bruno Buchberger,et al.  A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.

[4]  Michael Brickenstein,et al.  PolyBoRi: A framework for Gröbner-basis computations with Boolean polynomials , 2009, J. Symb. Comput..

[5]  Christian Eder,et al.  On The Criteria Of The F5 Algorithm , 2008, 0804.2033.

[6]  Christoph Lossen,et al.  Computing in Algebraic Geometry: A Quick Start using SINGULAR , 2006 .

[7]  Jee Koh,et al.  On efficient computation of grobner bases , 2008 .

[8]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[9]  Carlo Traverso,et al.  Gröbner bases computation using syzygies , 1992, ISSAC '92.

[10]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[11]  Michael Brickenstein,et al.  Slimgb: Gröbner bases with slim polynomials , 2010 .

[12]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[13]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[14]  Gwénolé Ars Applications des bases de Gröbner à la cryptograhie , 2005 .

[15]  Jintai Ding,et al.  MXL3: An Efficient Algorithm for Computing Gröbner Bases of Zero-Dimensional Ideals , 2009, ICISC.

[17]  F. S. Macaulay Some Formulæ in Elimination , 1902 .

[18]  B. Buchberger Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[19]  Christian Eder,et al.  F5C: A variant of Faugère's F5 algorithm with reduced Gröbner bases , 2009, J. Symb. Comput..

[20]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .

[21]  Till Stegers,et al.  Faugere's F5 Algorithm Revisited , 2006, IACR Cryptol. ePrint Arch..