Automatic Mapping Algorithms for Routine and Emergency Monitoring Data
暂无分享,去创建一个
[1] Peter Swerling,et al. Statistical properties of the contours of random surfaces , 1962, IRE Trans. Inf. Theory.
[2] P. J. Huber. Robust Estimation of a Location Parameter , 1964 .
[3] G. Matheron. The intrinsic random functions and their applications , 1973, Advances in Applied Probability.
[4] Richard O. Duda,et al. Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.
[5] W. Cleveland. Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .
[6] J. Seinfeld,et al. A Comparison of Interpolation Methods for Sparse Data: Application to Wind and Concentration Fields , 1979 .
[7] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[8] W. Cleveland. LOWESS: A Program for Smoothing Scatterplots by Robust Locally Weighted Regression , 1981 .
[9] Margaret Armstrong,et al. Variogram models must be positive-definite , 1981 .
[10] R. Franke. Scattered data interpolation: tests of some methods , 1982 .
[11] C. Obled,et al. Objective analyses and mapping techniques for rainfall fields: An objective comparison , 1982 .
[12] N. Lam. Spatial Interpolation Methods: A Review , 1983 .
[13] A. Journel. Nonparametric estimation of spatial distributions , 1983 .
[14] O. Dubrule. Comparing splines and kriging , 1984 .
[15] Geoffrey E. Hinton,et al. Learning internal representations by error propagation , 1986 .
[16] A. Yaglom. Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .
[17] Alex B. McBratney,et al. Comparison of several spatial prediction methods for soil pH , 1987 .
[18] Donald E. Myers,et al. INTERPOLATION WITH POSITIVE DEFINITE FUNCTIONS , 1988 .
[19] Denis Marcotte,et al. Trend surface analysis as a special case of IRF-k kriging , 1988 .
[20] W. Madych,et al. Multivariate interpolation and condi-tionally positive definite functions , 1988 .
[21] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[22] Lawrence R. Rabiner,et al. A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.
[23] de Haan Bj,et al. Dichtheid van meetnetten voor radioactiviteit met betrekking tot signalering van kernongevallen , 1989 .
[24] Kurt Hornik,et al. Multilayer feedforward networks are universal approximators , 1989, Neural Networks.
[25] Evan J. Englund,et al. A variance of geostatisticians , 1990 .
[26] Alex B. McBratney,et al. Further Comparison of Spatial Methods for Predicting Soil pH , 1990 .
[27] G. Wahba. Spline models for observational data , 1990 .
[28] James A. Lynch,et al. Statistical analysis of errors in estimating wet deposition using five surface estimation algorithms , 1991 .
[29] D. Myers. Kriging, cokriging, radial basis functions and the role of positive definiteness , 1992 .
[30] Elie Bienenstock,et al. Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.
[31] Clayton V. Deutsch,et al. GSLIB: Geostatistical Software Library and User's Guide , 1993 .
[32] Giovanni Graziani,et al. A System for Using the Air Radioactivity Measurements in a Long Range Model to Forecast Cloud Evolution , 1993 .
[33] Heekuck Oh,et al. Neural Networks for Pattern Recognition , 1993, Adv. Comput..
[34] M. Hutchinson,et al. Splines — more than just a smooth interpolator , 1994 .
[35] Geoffrey M. Laslett,et al. Kriging and Splines: An Empirical Comparison of their Predictive Performance in Some Applications , 1994 .
[36] Anders Krogh,et al. Neural Network Ensembles, Cross Validation, and Active Learning , 1994, NIPS.
[37] Fionn Murtagh,et al. Dynamical recurrent neural networks -- towards environmental time series prediction , 1995, Int. J. Neural Syst..
[38] R. C. Smetsers,et al. Variations in Outdoor Radiation Levels in the Netherlands , 1996 .
[39] Hans-Peter Kriegel,et al. Spatial Data Mining: A Database Approach , 1997, SSD.
[40] Madhu Sudan,et al. A statistical perspective on data mining , 1997, Future Gener. Comput. Syst..
[41] R. Smetsers,et al. Source-Dependent Probability Densities Explaining Frequency Distributions of Ambient Dose Rate in the Netherlands , 1997 .
[42] J. F. van Sonderen. Monitoring Strategy in Support of Radiological Emergency Management , 1997 .
[43] G. de Vries,et al. The European Union Radiological Data Exchange Platform (EURDEP): Two Years of International Data Exchange Experience , 1997 .
[44] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[45] Robert L. Buckley,et al. Modeling atmospheric deposition from a Cesium release in Spain using a stochastic transport model , 1999 .
[46] Alan E. Gelfand,et al. Bayesian Modeling and Inference for Geometrically Anisotropic Spatial Data , 1999 .
[47] Eulogio Padro-Igúzquiza. VARFIT: a fortran-77 program for fitting variogram models by weighted least squares , 1999 .
[48] B Pobanz,et al. Comparison of Gridded Versus Observation Data to Initialize ARAC Dispersion Models for the Algeciras, Spain Steel Mill Cs-137 Release , 1999 .
[49] Hiromi Yamazawa. Long-range Dispersion Analysis on Accidental Atmospheric Release of Cesium-137 at Algeciras. , 1999 .
[50] Timothy C. Coburn,et al. Geostatistics for Natural Resources Evaluation , 2000, Technometrics.
[51] Frédéric Hourdin,et al. Sub‐surface nuclear tests monitoring through the CTBT Xenon Network , 2000 .
[52] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[53] Pierre Goovaerts,et al. Geostatistical Interpolation of Positively Skewed and Censored Data in a Dioxin-Contaminated Site , 2000 .
[54] Michel Maignan,et al. Confidence Evaluation for Risk Prediction , 2001 .
[55] Weili Wu,et al. Modelling spatial dependencies for mining geospatial data: An introduction , 2001 .
[56] Ian T. Nabney,et al. Netlab: Algorithms for Pattern Recognition , 2002 .
[57] Samy Bengio,et al. Conditional Gaussian mixture models for environmental risk mapping , 2002, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing.
[58] Samy Bengio,et al. Torch: a modular machine learning software library , 2002 .
[59] Dionissios T. Hristopulos,et al. New anisotropic covariance models and estimation of anisotropic parameters based on the covariance tensor identity , 2002 .
[60] Eugenia Kalnay,et al. Atmospheric Modeling, Data Assimilation and Predictability , 2002 .
[61] Grégoire Dubois,et al. Mapping Radioactivity in the Environment. Spatial Interpolation Comparison 97. , 2003 .
[62] Peter J. Diggle,et al. An Introduction to Model-Based Geostatistics , 2003 .
[63] Dionissios T. Hristopulos. Simulations of spartan random fields , 2003 .
[64] Chang-Tien Lu,et al. Algorithms for spatial outlier detection , 2003, Third IEEE International Conference on Data Mining.
[65] S. SIAMJ.. SPARTAN GIBBS RANDOM FIELD MODELS FOR GEOSTATISTICAL APPLICATIONS∗ , 2003 .
[66] J.-P. Issartel,et al. Inverse transport for the verification of the Comprehensive Nuclear Test Ban Treaty , 2003 .
[67] Bernhard Schölkopf,et al. A tutorial on support vector regression , 2004, Stat. Comput..
[68] Holger Wendland,et al. Adaptive greedy techniques for approximate solution of large RBF systems , 2000, Numerical Algorithms.
[69] Lennart Robertson. Extended back-trajectories by means of adjoint equations , 2004 .
[70] Dubois Gregoire,et al. Spatial Interpolation Comparison (SIC) 2004: Introduction to the Exercise and Overview on the Results , 2005 .
[71] Galmarini Stefano. Real-time Geostatistics for Atmospheric Dispersion Forecasting; and Vice Versa? , 2005 .
[72] Grégoire Dubois,et al. Introduction to the Spatial Interpolation Comparison (SIC) 2004 Exercise and Presentation of the Datasets , 2005 .
[73] Lso,et al. Monitoring of radiation in the environment in the Netherlands - Results in 2004 , 2006 .