Automatic Mapping Algorithms for Routine and Emergency Monitoring Data

The 2004 edition of the Spatial Interpolation Comparison (SIC) exercise dealt with automating spatial interpolation algorithms for environmental monitoring systems designed for routine and emergency Situations. Real-time mapping of critical variables for the environment is still a very rudimentary discipline, often implemented as black boxes, and more advanced mapping methods exist that can provide more robust maps with less uncertainty. In this exercise, participants were invited to test their algorithms on data sets made available by the organizers. This paper describes the design of the exercise in detail and gives an overview of the results obtained by the participants.

[1]  Peter Swerling,et al.  Statistical properties of the contours of random surfaces , 1962, IRE Trans. Inf. Theory.

[2]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[3]  G. Matheron The intrinsic random functions and their applications , 1973, Advances in Applied Probability.

[4]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[5]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[6]  J. Seinfeld,et al.  A Comparison of Interpolation Methods for Sparse Data: Application to Wind and Concentration Fields , 1979 .

[7]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[8]  W. Cleveland LOWESS: A Program for Smoothing Scatterplots by Robust Locally Weighted Regression , 1981 .

[9]  Margaret Armstrong,et al.  Variogram models must be positive-definite , 1981 .

[10]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[11]  C. Obled,et al.  Objective analyses and mapping techniques for rainfall fields: An objective comparison , 1982 .

[12]  N. Lam Spatial Interpolation Methods: A Review , 1983 .

[13]  A. Journel Nonparametric estimation of spatial distributions , 1983 .

[14]  O. Dubrule Comparing splines and kriging , 1984 .

[15]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[16]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[17]  Alex B. McBratney,et al.  Comparison of several spatial prediction methods for soil pH , 1987 .

[18]  Donald E. Myers,et al.  INTERPOLATION WITH POSITIVE DEFINITE FUNCTIONS , 1988 .

[19]  Denis Marcotte,et al.  Trend surface analysis as a special case of IRF-k kriging , 1988 .

[20]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[21]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[22]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[23]  de Haan Bj,et al.  Dichtheid van meetnetten voor radioactiviteit met betrekking tot signalering van kernongevallen , 1989 .

[24]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[25]  Evan J. Englund,et al.  A variance of geostatisticians , 1990 .

[26]  Alex B. McBratney,et al.  Further Comparison of Spatial Methods for Predicting Soil pH , 1990 .

[27]  G. Wahba Spline models for observational data , 1990 .

[28]  James A. Lynch,et al.  Statistical analysis of errors in estimating wet deposition using five surface estimation algorithms , 1991 .

[29]  D. Myers Kriging, cokriging, radial basis functions and the role of positive definiteness , 1992 .

[30]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[31]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[32]  Giovanni Graziani,et al.  A System for Using the Air Radioactivity Measurements in a Long Range Model to Forecast Cloud Evolution , 1993 .

[33]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[34]  M. Hutchinson,et al.  Splines — more than just a smooth interpolator , 1994 .

[35]  Geoffrey M. Laslett,et al.  Kriging and Splines: An Empirical Comparison of their Predictive Performance in Some Applications , 1994 .

[36]  Anders Krogh,et al.  Neural Network Ensembles, Cross Validation, and Active Learning , 1994, NIPS.

[37]  Fionn Murtagh,et al.  Dynamical recurrent neural networks -- towards environmental time series prediction , 1995, Int. J. Neural Syst..

[38]  R. C. Smetsers,et al.  Variations in Outdoor Radiation Levels in the Netherlands , 1996 .

[39]  Hans-Peter Kriegel,et al.  Spatial Data Mining: A Database Approach , 1997, SSD.

[40]  Madhu Sudan,et al.  A statistical perspective on data mining , 1997, Future Gener. Comput. Syst..

[41]  R. Smetsers,et al.  Source-Dependent Probability Densities Explaining Frequency Distributions of Ambient Dose Rate in the Netherlands , 1997 .

[42]  J. F. van Sonderen Monitoring Strategy in Support of Radiological Emergency Management , 1997 .

[43]  G. de Vries,et al.  The European Union Radiological Data Exchange Platform (EURDEP): Two Years of International Data Exchange Experience , 1997 .

[44]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[45]  Robert L. Buckley,et al.  Modeling atmospheric deposition from a Cesium release in Spain using a stochastic transport model , 1999 .

[46]  Alan E. Gelfand,et al.  Bayesian Modeling and Inference for Geometrically Anisotropic Spatial Data , 1999 .

[47]  Eulogio Padro-Igúzquiza VARFIT: a fortran-77 program for fitting variogram models by weighted least squares , 1999 .

[48]  B Pobanz,et al.  Comparison of Gridded Versus Observation Data to Initialize ARAC Dispersion Models for the Algeciras, Spain Steel Mill Cs-137 Release , 1999 .

[49]  Hiromi Yamazawa Long-range Dispersion Analysis on Accidental Atmospheric Release of Cesium-137 at Algeciras. , 1999 .

[50]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[51]  Frédéric Hourdin,et al.  Sub‐surface nuclear tests monitoring through the CTBT Xenon Network , 2000 .

[52]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[53]  Pierre Goovaerts,et al.  Geostatistical Interpolation of Positively Skewed and Censored Data in a Dioxin-Contaminated Site , 2000 .

[54]  Michel Maignan,et al.  Confidence Evaluation for Risk Prediction , 2001 .

[55]  Weili Wu,et al.  Modelling spatial dependencies for mining geospatial data: An introduction , 2001 .

[56]  Ian T. Nabney,et al.  Netlab: Algorithms for Pattern Recognition , 2002 .

[57]  Samy Bengio,et al.  Conditional Gaussian mixture models for environmental risk mapping , 2002, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing.

[58]  Samy Bengio,et al.  Torch: a modular machine learning software library , 2002 .

[59]  Dionissios T. Hristopulos,et al.  New anisotropic covariance models and estimation of anisotropic parameters based on the covariance tensor identity , 2002 .

[60]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[61]  Grégoire Dubois,et al.  Mapping Radioactivity in the Environment. Spatial Interpolation Comparison 97. , 2003 .

[62]  Peter J. Diggle,et al.  An Introduction to Model-Based Geostatistics , 2003 .

[63]  Dionissios T. Hristopulos Simulations of spartan random fields , 2003 .

[64]  Chang-Tien Lu,et al.  Algorithms for spatial outlier detection , 2003, Third IEEE International Conference on Data Mining.

[65]  S. SIAMJ. SPARTAN GIBBS RANDOM FIELD MODELS FOR GEOSTATISTICAL APPLICATIONS∗ , 2003 .

[66]  J.-P. Issartel,et al.  Inverse transport for the verification of the Comprehensive Nuclear Test Ban Treaty , 2003 .

[67]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[68]  Holger Wendland,et al.  Adaptive greedy techniques for approximate solution of large RBF systems , 2000, Numerical Algorithms.

[69]  Lennart Robertson Extended back-trajectories by means of adjoint equations , 2004 .

[70]  Dubois Gregoire,et al.  Spatial Interpolation Comparison (SIC) 2004: Introduction to the Exercise and Overview on the Results , 2005 .

[71]  Galmarini Stefano Real-time Geostatistics for Atmospheric Dispersion Forecasting; and Vice Versa? , 2005 .

[72]  Grégoire Dubois,et al.  Introduction to the Spatial Interpolation Comparison (SIC) 2004 Exercise and Presentation of the Datasets , 2005 .

[73]  Lso,et al.  Monitoring of radiation in the environment in the Netherlands - Results in 2004 , 2006 .