Dean vortices applied to membrane process Part I. Experimental approach

In order to demonstrate the interest of using Dean vortices at the industrial scale, three quite different types of water, two sizes of membrane module and two pilot plants are used. For bentonite suspensions and semi-industrial modules, the relation between limiting flux and wall shear stress for a Dean module is the same as the one obtained at the lab scale, whatever the shape and length of the helix. Secondary flow effects on permeate flux are maintained in the case of modules of greater size. Although for these semi-industrial modules, the limiting flux obtained in a straight module differs from that obtained in a woven module for a same wall shear stress, in the case of industrial modules the two types of modules seem to exhibit the same behavior. The whole of the results obtained for industrial modules is represented by a phenomenological relation that expresses the decrease in the fouling when the wall shear stress increases. In industrial conditions, an influence of the hydrodynamics is observed which is lower than at the lab scale.

[1]  Georges Belfort,et al.  Fluid mechanics in membrane filtration: Recent developments☆ , 1989 .

[2]  Hans-Curt Flemming,et al.  Biofouling—the Achilles heel of membrane processes☆ , 1997 .

[3]  Phil Ligrani,et al.  Heat transfer in curved and straight channels with transitional flow , 1998 .

[4]  P. Moulin,et al.  Dean vortices: a comparison of woven versus helical and straight hollow fiber membrane modules , 2000 .

[5]  Patrice Bacchin,et al.  Formation et résistance au transfert d'un dépôt de colloi͏̈des sur une membrane d'ultrafiltration , 1994 .

[6]  C. Fonade,et al.  How slug flow can enhance the ultrafiltration flux in mineral tubular membranes , 1997 .

[7]  R. Ben Aim,et al.  Aeration performance of immersed hollow-fiber membranes in a bentonite suspension , 2002 .

[8]  Anthony G. Fane,et al.  Fouling transients in nominally sub-critical flux operation of a membrane bioreactor , 2002 .

[9]  Christophe A. Serra,et al.  Use of air sparging to improve backwash efficiency in hollow-fiber modules , 1999 .

[10]  Ted B. Martonen,et al.  FLOW TRANSITION IN BENDS AND APPLICATIONS TO AIRWAYS , 2000 .

[11]  Hassan Peerhossaini,et al.  Residence time distribution in twisted pipe flows: helically coiled system and chaotic system , 1997 .

[12]  Yi Wang,et al.  Preparation of coiled hollow-fiber membrane and mass transfer performance in membrane extraction , 2003 .

[13]  Cécile Boesinger Mélange diffusif et réactif dans des réacteurs tubulaires à trajectoires complexes. , 2002 .

[14]  J. Howell,et al.  Critical flux in ultrafiltration of myoglobin and baker’s yeast , 2002 .

[15]  S. V. Patankar,et al.  Analysis of laminar non‐Newtonian flow and heat transfer in curved tubes , 1982 .

[16]  J. D. Seader,et al.  Entry region for steady viscous flow in coiled circular pipes , 1974 .

[17]  G. Louridas,et al.  Haemodynamic factors and the important role of local low static pressure in coronary wall thickening. , 2002, International journal of cardiology.

[18]  Michael Clifton,et al.  The use of Dean vortices in coiled hollow-fibre ultrafiltration membranes for water and wastewater treatment , 1998 .

[19]  L. C. Truesdell,et al.  Numerical treatment of fully developed laminar flow in helically coiled tubes , 1970 .

[20]  Thomas Hüttl,et al.  Reynolds‐stress balance equations in orthogonal helical coordinates and application , 2004 .

[21]  Christophe A. Serra,et al.  Mass transfer improvement by secondary flows: Dean vortices in coiled tubular membranes , 1996 .

[22]  Christelle Guigui Procédé hybride de coagulation/ultrafiltration pour la potabilisation des eaux de surface , 2000 .

[23]  Edward W. Merrill,et al.  Effect of secondary fluid motion on laminar flow heat transfer in helically coiled tubes , 1971 .

[24]  Peggy Manno Intérêt des vortex de dean en filtration par membranes : application à des suspensions de levures et à la bière , 1998 .

[25]  P Moulin,et al.  Dean vortices: comparison of numerical simulation of shear stress and improvement of mass transfer in membrane processes at low permeation fluxes , 2001 .

[26]  Takehiko Inaba,et al.  Laminar Flow in a Helically Coiled Pipe , 1980 .

[27]  Cécile Gaucher,et al.  Etude locale de l'hydrodynamique dans un module équipé d'une membrane plane d'ultrafiltration en céramique : influence de la contrainte pariétale sur le colmatage , 2001 .

[28]  Michael Clifton,et al.  Mass transfer improvement in helically wound hollow fibre ultrafiltration modules , 1998 .

[29]  C. J. Bolinder The Effect of Torsion on the Bifurcation Structure of Laminar Flow in a Helical Square Duct , 1995 .

[30]  Georges Belfort,et al.  Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities , 1993 .

[31]  P. Mishra,et al.  Momentum Transfer in Curved Pipes. 2. Non-Newtonian Fluids , 1979 .

[32]  J. J. Ulbrecht,et al.  VELOCITY PROFILES OF NEWTONIAN AND NON-NEWTONIAN TOROIDAL FLOWS MEASURED BY A LDA TECHNIQUE , 1983 .

[33]  Clement Kleinstreuer,et al.  Micro-particle transport and deposition in a human oral airway model , 2002 .

[34]  Abraham M. Lenhoff,et al.  Flow in curved ducts: bifurcation structure for stationary ducts , 1989, Journal of Fluid Mechanics.

[35]  Pierre Aimar,et al.  A unifying model for concentration polarization, gel-layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions , 2002 .

[36]  Abderrahim Abbas,et al.  Use of fluid instabilities to enhance membrane performance: a review , 2001 .

[37]  Ramon Molina Valle,et al.  Numerical hydrodynamic and thermal analysis of laminar flow in curved elliptic and rectangular ducts , 1999 .

[38]  Georges Belfort,et al.  Flux enhancement during dean vortex tubular membrane nanofiltration. 10. Design, construction, and system characterization , 1998 .

[39]  Andrew L. Zydney,et al.  Analysis of humic acid fouling during microfiltration using a pore blockage-cake filtration model , 2002 .

[40]  Jacob H. Masliyah,et al.  Axially invariant laminar flow in helical pipes with a finite pitch , 1993, Journal of Fluid Mechanics.

[41]  Rainer Friedrich,et al.  Influence of curvature and torsion on turbulent flow in helically coiled pipes , 2000 .

[42]  N. B. Hallam,et al.  The potential for biofilm growth in water distribution systems. , 2001, Water research.

[43]  R Kuriyel,et al.  A new coiled hollow-fiber module design for enhanced microfiltration performance in biotechnology. , 1999, Biotechnology and bioengineering.

[44]  Georges Belfort,et al.  Dean Vortices with Wall Flux in a Curved Channel Membrane System: 3. Concentration Polarization in a Spiral Reverse Osmosis Slit , 1998 .

[45]  I. A. Gachechiladze,et al.  P003 Quantitative analysis of flow velocity field in aorta , 1998 .

[46]  K. C. Cheng,et al.  Boundary vorticity method for laminar forced convection heat transfer in curved pipes , 1971 .

[47]  Denis Roizard,et al.  Removal of volatile organic components (VOCs) from water by pervaporation: separation improvement by Dean vortices , 1998 .

[48]  Georges Belfort,et al.  Dean vortices with wall flux in a curved channel membrane system , 1993 .

[49]  Pascal Jaouen,et al.  Improvement of the performance of the ultrafiltration of bentonite suspensions using a swirling decaying annular flow: comparison with tangential plane and axial annular flows , 2001 .

[50]  John Eustice,et al.  Flow of water in curved pipes , 1910 .

[51]  Hassan Peerhossaini,et al.  The effects of chaotic advection on heat transfer , 1997 .

[52]  J. Howell,et al.  Sub-critical flux operation of microfiltration , 1995 .

[53]  Christophe A. Serra,et al.  Flux improvement by Dean vortices: ultrafiltration of colloidal suspensions and macromolecular solutions , 1999 .

[54]  Hsiao C. Kao,et al.  Torsion effect on fully developed flow in a helical pipe , 1987, Journal of Fluid Mechanics.

[55]  C. Y. Wang,et al.  On the low-Reynolds-number flow in a helical pipe , 1981, Journal of Fluid Mechanics.

[56]  Kyoji Yamamoto,et al.  Stability of the flow in a helical tube , 1998 .

[57]  C Kleinstreuer,et al.  Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta. , 2003, Journal of biomechanics.

[58]  Georges Belfort,et al.  Viscosity effects on Dean vortex membrane microfiltration , 1999 .

[59]  L. Talbot,et al.  Flow in Curved Pipes , 1983 .

[60]  Michael Clifton,et al.  Hollow-fibre membrane module design: comparison of different curved geometries with Dean vortices , 2001 .

[61]  A D Hughes,et al.  Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. , 2000, Journal of biomechanics.

[62]  H. Itō,et al.  Laminar Flow in Curved Pipes , 1969 .

[63]  Hassan Peerhossaini,et al.  Experimental and numerical characterisation of mixing in a steady spatially chaotic flow by means of residence time distribution measurements , 2000 .

[64]  W. R. Dean,et al.  Note on the motion of fluid in a curved pipe , 1959 .

[65]  P. Luckham,et al.  The colloidal and rheological properties of bentonite suspensions , 1999 .

[66]  Satoshi Takizawa,et al.  Study on fouling materials in the membrane treatment process for potable water , 1996 .

[67]  André Larbot,et al.  An experimental study of helically stamped ceramic microfiltration membranes using bentonite suspensions , 2001 .

[68]  S. Nakatsuka,et al.  Drinking water treatment by using ultrafiltration hollow fiber membranes , 1996 .

[69]  Massimo Germano,et al.  The Dean equations extended to a helical pipe flow , 1989, Journal of Fluid Mechanics.

[70]  Georges Belfort,et al.  Dean Vortex Membrane Microfiltration and Diafiltration of rBDNF E.coliInclusion Bodies , 2002, Biotechnology progress.

[71]  Shinichiro Yanase,et al.  Resonant Interactions of Dean Vortices in a Curved Channel Flow , 1998 .

[72]  Georges Belfort,et al.  Flux enhancement during Dean vortex microfiltration. 8. Further diagnostics1 , 1997 .

[73]  Anne M. Robertson,et al.  Flow of second order fluids in curved pipes , 2000 .

[74]  W. R. Dean XVI. Note on the motion of fluid in a curved pipe , 1927 .

[75]  Jérôme Rose,et al.  Physico-chemical study of fouling mechanisms of ultrafiltration membrane on Biwa lake (Japan) , 1997 .

[76]  M. Germano,et al.  On the effect of torsion on a helical pipe flow , 1982, Journal of Fluid Mechanics.

[77]  Lei Xue,et al.  Study on laminar flow in helical circular pipes with Galerkin method , 2002 .

[78]  Hassan Peerhossaini,et al.  Chaotic heat transfer for heat exchanger design and comparison with a regular regime for a large range of Reynolds numbers , 2000 .

[79]  William A. Edelstein,et al.  Dean vortex stability using magnetic resonance flow imaging and numerical analysis , 2001 .

[80]  J. D. Seader,et al.  Fully developed viscous—flow heat transfer in curved circular tubes with uniform wall temperature , 1974 .

[81]  Bamin Khomami,et al.  Energetic effects on the stability of viscoelastic Dean flow , 2000 .

[82]  Jasmedh Kaur,et al.  Studies on protein transmission in thin channel flow module: the role of dean vortices for improving mass transfer , 2002 .

[83]  D. Xie,et al.  Torsion effect on secondary flow in a helical pipe , 1990 .

[84]  Georges Belfort,et al.  Flux enhancement during Dean vortex tubular membrane nanofiltration: 13. Effects of concentration and solute type , 1999 .

[85]  H. Søeberg,et al.  Viscous flow in curved tubes—I. Velocity profiles , 1988 .

[86]  G. Belfort,et al.  Dean vortices with wall flux in a curved channel membrane system: 4. Effect of vortices on permeation fluxes of suspensions in microporous membrane , 1993 .

[87]  C. S. Vassilieff,et al.  Corss-flow microfiltration of bentonite-in-water dispersions: Initial transient effects at low concentration , 1996 .