On fractional thermoelasticity

Two general models of fractional heat conduction for non-homogeneous anisotropic elastic solids are introduced and the constitutive equations for thermoelasticity theory are obtained, uniqueness and reciprocal theorems are proved and the convolutional variational principle is established and used to prove a uniqueness theorem with no restriction on the elasticity or thermal conductivity tensors except for symmetry conditions. The dynamic coupled, Lord—Shulman, Green—Naghdi and fractional coupled thermoelasticity theories result as limit cases. The reciprocity relation in the case of quiescent initial state is found to be independent of the order of differintegration.

[1]  M. Ciarletta,et al.  Reciprocal and variational principles in linear thermoelasticity without energy dissipation , 2010 .

[2]  D. Ieşan On the linear coupled thermoelasticity with two temperatures , 1970 .

[3]  Dumitru Baleanu,et al.  Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives , 2005 .

[4]  A. El-Sayed,et al.  On the stability of a fractional-order differential equation with nonlocal initial condition , 2008 .

[5]  Hamdy M. Youssef,et al.  Theory of Fractional Order Generalized Thermoelasticity , 2010 .

[6]  T. Atanacković,et al.  On a Viscoelastic Rod with Constitutive Equation Containing Fractional Derivatives of Two Different Orders , 2004 .

[7]  Lawrence E. Payne,et al.  On uniqueness and continuous dependence in dynamical problems of linear thermoelasticity , 1970 .

[8]  Jan Drewes Achenbach,et al.  Reciprocity in Elastodynamics , 2003 .

[9]  Y. Povstenko Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses , 2010 .

[10]  Francesco Mainardi,et al.  Linear models of dissipation in anelastic solids , 1971 .

[11]  D. Chandrasekharaiah,et al.  Hyperbolic Thermoelasticity: A Review of Recent Literature , 1998 .

[12]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[13]  Morton E. Gurtin,et al.  Variational principles for linear elastodynamics , 1964 .

[14]  I. S. Sokolnikoff Mathematical theory of elasticity , 1946 .

[15]  Richard B. Hetnarski,et al.  GENERALIZED THERMOELASTICITY: CLOSED-FORM SOLUTIONS , 1993 .

[16]  H. Sherief,et al.  Fractional order theory of thermoelasticity , 2010 .

[17]  M. Ezzat,et al.  Uniqueness and reciprocal theorems in linear micropolar electro-magnetic thermoelasticity with two relaxation times , 2009 .

[18]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[19]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[20]  L. Wheeler,et al.  Some theorems in classical elastodynamics , 1968 .

[21]  A. Cemal Eringen,et al.  Foundations and solids , 1999 .

[22]  W. Nowacki,et al.  Problems of thermoelasticity , 1970 .

[23]  Emad Awad,et al.  On the coupled theory of thermo-piezoelectric/ piezomagnetic materials with two temperatures , 2010 .

[24]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.

[25]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[26]  M. Biot Thermoelasticity and Irreversible Thermodynamics , 1956 .

[27]  Y. C. Fung,et al.  Foundation of Solid Mechanics , 1966 .

[28]  H. Lord,et al.  A GENERALIZED DYNAMICAL THEORY OF THERMOELASTICITY , 1967 .

[29]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[30]  Marina V. Shitikova,et al.  A new method for solving dynamic problems of fractional derivative viscoelasticity , 2001 .

[31]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[32]  Magdy A. Ezzat,et al.  Two-temperature theory in generalized magneto-thermoelasticity with two relaxation times , 2011 .

[33]  I. Podlubny Fractional differential equations , 1998 .

[34]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[35]  Matemática Aplicada,et al.  Uniqueness and Growth of Solutions in Two-Temperature Generalized Thermoelastic Theories , 2009 .

[36]  P. M. Naghdi,et al.  Thermoelasticity without energy dissipation , 1993 .

[37]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[38]  J. Ignaczak UNIQUENESS IN GENERALIZED THERMOELASTICITY , 1979 .

[39]  A. L. Florence,et al.  Dynamic problems of thermoelasticity , 1975 .

[40]  M. Gurtin The Linear Theory of Elasticity , 1973 .

[41]  George Herrmann,et al.  Linear Theory of Elasticity , 2000 .