Long-time convergence of an adaptive biasing force method
暂无分享,去创建一个
[1] Maria G. Westdickenberg,et al. A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit , 2009 .
[2] T. Lelièvre. A general two-scale criteria for logarithmic Sobolev inequalities , 2009 .
[3] Raphael Roux,et al. Existence, uniqueness and convergence of a particle approximation for the Adaptive Biasing Force process , 2009 .
[4] G. Ciccotti,et al. Projection of diffusions on submanifolds: Application to mean force computation , 2008 .
[5] Christophe Chipot,et al. Free Energy Calculations , 2008 .
[6] T. Lelièvre,et al. Computation of free energy profiles with parallel adaptive dynamics. , 2006, The Journal of chemical physics.
[7] T. Lelièvre,et al. Computation of free energy differences through nonequilibrium stochastic dynamics: The reaction coordinate case , 2006, J. Comput. Phys..
[8] Maria G. Reznikoff,et al. A new criterion for the logarithmic Sobolev inequality and two applications , 2007 .
[9] A. Laio,et al. Equilibrium free energies from nonequilibrium metadynamics. , 2006, Physical review letters.
[10] Christophe Chipot,et al. Exploring the free-energy landscape of a short peptide using an average force. , 2005, The Journal of chemical physics.
[11] C. Chipot,et al. Overcoming free energy barriers using unconstrained molecular dynamics simulations. , 2004, The Journal of chemical physics.
[12] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[13] Alessandro Laio,et al. Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. , 2003, Physical review letters.
[14] C. Villani. Topics in Optimal Transportation , 2003 .
[15] Eric F Darve,et al. Calculating free energies using average force , 2001 .
[16] D. Landau,et al. Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] Giuseppe Toscani,et al. ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .
[18] D. Landau,et al. Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.
[19] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[20] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[21] Djalil CHAFAÏ,et al. Sur les in'egalit'es de Sobolev logarithmiques , 2000 .
[22] S. Bobkov,et al. Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .
[23] Michiel Sprik,et al. Free energy from constrained molecular dynamics , 1998 .
[24] W. Briels,et al. THE CALCULATION OF FREE-ENERGY DIFFERENCES BY CONSTRAINED MOLECULAR-DYNAMICS SIMULATIONS , 1998 .
[25] C. Jarzynski. Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach , 1997, cond-mat/9707325.
[26] M.G.B. Drew,et al. The art of molecular dynamics simulation , 1996 .
[27] L. Evans. Measure theory and fine properties of functions , 1992 .
[28] D. Stroock,et al. Logarithmic Sobolev inequalities and stochastic Ising models , 1987 .
[29] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[30] M. Émery,et al. Hypercontractivité de semi-groupes de diffusion , 1984 .
[31] M. Freidlin,et al. Random Perturbations of Dynamical Systems , 1984 .
[32] E. Davies. Spectral properties of metastable Markov semigroups , 1983 .
[33] E. Davies,et al. Metastable States of Symmetric Markov Semigroups II , 1982 .
[34] E. Davies,et al. Metastable States of Symmetric Markov Semigroups I , 1982 .
[35] E. Davies. Dynamical stability of metastable states , 1982 .
[36] P. Meyer,et al. Sur les inegalites de Sobolev logarithmiques. I , 1982 .
[37] L. Gross. LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .