A new piece in the puzzle of lithium/air batteries: computational study on the chemical stability of propylene carbonate in the presence of lithium peroxide.

The electrolyte role in non-aqueous lithium/air batteries is attracting a lot of attention in several research groups, because of its fundamental importance in producing the appropriate reversible electrochemical reduction. While recent published works identify the lithium superoxide as the main degrading agent for propylene carbonate (PC), there is no clear experimental evidence that the oxygen at the cathode interface layer does not reduce further to peroxide before reacting with PC. Here, we investigate the reactivity of lithium peroxide versus propylene carbonate and find that Li(2)O(2) irreversibly decomposes the carbonate solvent, leading to alkyl carbonates. We also show that, compared with a single Li(2)O(2) unit in PC, a crystalline surface of Li(2)O(2) exhibits an enhanced reactivity. Our findings support the possibility that in lithium/air cells, oxygen may still be reduced to peroxide, with the formation of solid Li(2)O(2), which degrades by decomposing PC.

[1]  Kang Xu,et al.  Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes , 2011 .

[2]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[3]  G. Graff,et al.  Investigation of the rechargeability of Li–O2 batteries in non-aqueous electrolyte , 2011 .

[4]  N. Imanishi,et al.  Aqueous Lithium/Air Rechargeable Batteries , 2011 .

[5]  Xiangwu Zhang,et al.  Lithiumoxygen batteriesLimiting factors that affect performance , 2011 .

[6]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[7]  Hubert A. Gasteiger,et al.  Method Development to Evaluate the Oxygen Reduction Activity of High-Surface-Area Catalysts for Li-Air Batteries , 2011 .

[8]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[9]  Kang Xu,et al.  A non-aqueous electrolyte for the operation of Li/air battery in ambient environment , 2011 .

[10]  P R C Kent,et al.  Accurate static and dynamic properties of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics. , 2011, The journal of physical chemistry. B.

[11]  Shengbo Zhang,et al.  Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery , 2011 .

[12]  Sanjeev Mukerjee,et al.  Rechargeable Lithium/TEGDME- LiPF6 ∕ O2 Battery , 2011 .

[13]  Mario Blanco,et al.  Computational Study of the Mechanisms of Superoxide-Induced Decomposition of Organic Carbonate-Based Electrolytes , 2011 .

[14]  Yair Ein-Eli,et al.  Review on Liair batteriesOpportunities, limitations and perspective , 2011 .

[15]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[16]  Zhichuan J. Xu,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[17]  Fuminori Mizuno,et al.  Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes , 2010 .

[18]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[19]  Wu Xu,et al.  Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries , 2010 .

[20]  N. Sammes,et al.  A novel high energy density rechargeable lithium/air battery. , 2010, Chemical communications.

[21]  J. Nørskov,et al.  Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery. , 2010, The Journal of chemical physics.

[22]  Jeffrey Read,et al.  Discharge characteristic of a non-aqueous electrolyte Li/O2 battery , 2010 .

[23]  Wu Xu,et al.  Effects of Nonaqueous Electrolytes on the Performance of Lithium/Air Batteries , 2010 .

[24]  Tao Zhang,et al.  Stability of a Water-Stable Lithium Metal Anode for a Lithium–Air Battery with Acetic Acid–Water Solutions , 2010 .

[25]  Sanjeev Mukerjee,et al.  Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications , 2009 .

[26]  N. Sammes,et al.  Water-Stable Lithium Anode with the Three-Layer Construction for Aqueous Lithium–Air Secondary Batteries , 2009 .

[27]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[28]  Tao Zhang,et al.  Lithium anode for lithium-air secondary batteries , 2008 .

[29]  Tao Zhang,et al.  Li∕Polymer Electrolyte∕Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium–Air Secondary Batteries with an Aqueous Electrolyte , 2008 .

[30]  Peter G. Bruce,et al.  Energy storage beyond the horizon: Rechargeable lithium batteries , 2008 .

[31]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[32]  M. Armand,et al.  Building better batteries , 2008, Nature.

[33]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[34]  J. Stewart Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements , 2007, Journal of molecular modeling.

[35]  Y. Kameda,et al.  Solvation structure of Li+ in concentrated LiPF6-propylene carbonate solutions. , 2007, The journal of physical chemistry. B.

[36]  G. Scuseria,et al.  Assessment of a long-range corrected hybrid functional. , 2006, The Journal of chemical physics.

[37]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[38]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[39]  Takashi Kuboki,et al.  Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte , 2005 .

[40]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[41]  Alessandro Laio,et al.  Azulene-to-naphthalene rearrangement: the Car-Parrinello metadynamics method explores various reaction mechanisms. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[42]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[43]  Shinichiro Nakamura,et al.  Decomposition of LiPF6and Stability of PF 5 in Li-Ion Battery Electrolytes Density Functional Theory and Molecular Dynamics Studies , 2003 .

[44]  Matthew H. Ervin,et al.  Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery , 2003 .

[45]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[46]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  K. Tasaki Computational Study of Salt Association in Li-Ion Battery Electrolyte , 2002 .

[48]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[49]  D. Price,et al.  Lithium environment in PEO-LiClO4 polymer electrolyte , 2001 .

[50]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[51]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[52]  Alessandro Curioni,et al.  New advances in chemistry and materials science with CPMD and parallel computing , 2000, Parallel Comput..

[53]  Price,et al.  Structure of liquid PEO-LiTFSI electrolyte , 2000, Physical review letters.

[54]  Miho Fujita,et al.  Conductivity and Solvation of Li+ Ions of LiPF6 in Propylene Carbonate Solutions , 2000 .

[55]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[56]  G. D. Smith,et al.  Cation environment in molten lithium iodide doped poly(ethylene oxide) , 1997 .

[57]  K. Abraham,et al.  Highly Conductive PEO-like Polymer Electrolytes , 1997 .

[58]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[59]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[60]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[61]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[62]  M. Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1995, Physical review. B, Condensed matter.

[63]  M. Ue,et al.  Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate‐Ethyl Methyl Carbonate Mixed Solvent , 1995 .

[64]  M. Ue Mobility and Ionic Association of Lithium and Quaternary Ammonium Salts in Propylene Carbonate and γ‐Butyrolactone , 1994 .

[65]  Doron Aurbach,et al.  The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts , 1991 .

[66]  J. Prausnitz,et al.  Donor number estimation for oxygen- and nitrogen-containing solvents via proton NMR shift of chloroform , 1985 .

[67]  Ralph G. Pearson,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[68]  P. S. Jain,et al.  Electrolytic reduction of oxygen at solid electrodes in aprotic solvents-the superoxide ion , 1982 .

[69]  D. T. Sawyer,et al.  How super is superoxide , 1981 .

[70]  A. Frimer,et al.  CHEMICAL REACTIONS OF SUPEROXIDE ANION RADICAL IN APROTIC SOLVENTS , 1978 .

[71]  V. Gutmann Solvent effects on the reactivities of organometallic compounds , 1976 .

[72]  V. Gutmann,et al.  The acceptor number — A quantitative empirical parameter for the electrophilic properties of solvents , 1975 .

[73]  M. E. Peover,et al.  Electrolytic reduction of oxygen in aprotic solvents: The superoxide ion , 1966 .

[74]  R. Pearson HARD AND SOFT ACIDS AND BASES , 1963 .

[75]  Haoshen Zhou,et al.  A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy , 2010 .

[76]  K. M. Abraham,et al.  A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint) , 2010 .

[77]  Sharon L. Blair,et al.  High-Capacity Lithium–Air Cathodes , 2009 .

[78]  J. Read Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery , 2006 .

[79]  Alessandro Curioni,et al.  Dual-level parallelism for ab initio molecular dynamics: Reaching teraflop performance with the CPMD code , 2005, Parallel Comput..

[80]  Shinichirou Nakamura,et al.  Liイオン電池電解質中におけるLiPF 6 の分解とPF 5 の安定性 密度関数理論と分子動力学的研究 , 2003 .

[81]  D. T. Sawyer,et al.  Reactivity of superoxide ion with carbonyl compounds in aprotic solvents , 1979 .