SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at z = 1.03

We present the detection at 89 μm (observed frame) of the Herschel-selected gravitationally lensed starburst galaxy HATLAS J1429-0028 (also known as G15v2.19) in 15 minutes with the High-resolution Airborne Wideband Camera-plus (HAWC+) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). The spectacular lensing system consists of an edge-on foreground disk galaxy at z = 0.22 and a nearly complete Einstein ring of an intrinsic ultra-luminous infrared (IR) galaxy at z = 1.03. Is this high IR luminosity powered by pure star formation (SF) or also an active galactic nucleus (AGN)? Previous nebular line diagnostics indicate that it is star formation dominated. We perform a 27-band multiwavelength spectral energy distribution (SED) modeling including the new SOFIA/HAWC+ data to constrain the fractional AGN contribution to the total IR luminosity. The AGN fraction in the IR turns out to be negligible. In addition, J1429-0028 serves as a testbed for comparing SED results from different models/templates and SED codes (magphys, sed3fit, and cigale). We stress that star formation history is the dominant source of uncertainty in the derived stellar mass (as high as a factor of ∼10) even in the case of extensive photometric coverage. Furthermore, the detection of a source at z ∼ 1 with SOFIA/HAWC+ demonstrates the potential of utilizing this facility for distant galaxy studies including the decomposition of SF/AGN components, which cannot be accomplished with other current facilities.

[1]  A. Cooray,et al.  Infrared Contributions of X-Ray Selected Active Galactic Nuclei in Dusty Star-forming Galaxies , 2018, The Astrophysical Journal.

[2]  Benjamin D. Johnson,et al.  Hot Dust in Panchromatic SED Fitting: Identification of Active Galactic Nuclei and Improved Galaxy Properties , 2017, 1709.04469.

[3]  O. Fèvre,et al.  The VLA-COSMOS 3 GHz Large Project: The infrared- radio correlation of star-forming galaxies and AGN to z ≲ 6 , 2017, 1703.09723.

[4]  H. Matsuhara,et al.  [Ultra] luminous infrared galaxies selected at 90 μm in the AKARI deep field: a study of AGN types contributing to their infrared emission , 2016, 1611.07410.

[5]  W. Brandt,et al.  SPT0346-52: NEGLIGIBLE AGN ACTIVITY IN A COMPACT, HYPER-STARBURST GALAXY AT z = 5.7 , 2016, 1609.08553.

[6]  J. Carlstrom,et al.  ALMA IMAGING AND GRAVITATIONAL LENS MODELS OF SOUTH POLE TELESCOPE—SELECTED DUSTY, STAR-FORMING GALAXIES AT HIGH REDSHIFTS , 2016, 1604.05723.

[7]  W. Everett,et al.  THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEY , 2016, 1603.05094.

[8]  J. Vieira,et al.  STELLAR MASSES AND STAR FORMATION RATES OF LENSED, DUSTY, STAR-FORMING GALAXIES FROM THE SPT SURVEY , 2015, 1509.02835.

[9]  Daniel J. B. Smith,et al.  Deriving star formation histories from photometry using energy balance spectral energy distribution modelling , 2015, 1507.07554.

[10]  M. Jarvis,et al.  HerMES: ALMA IMAGING OF HERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES , 2015, 1504.05256.

[11]  F. Walter,et al.  AN ALMA SURVEY OF SUB-MILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: PHYSICAL PROPERTIES DERIVED FROM ULTRAVIOLET-TO-RADIO MODELING , 2015, 1504.04376.

[12]  D. Elbaz,et al.  Constraining the properties of AGN host galaxies with spectral energy distribution modelling , 2015, 1501.03672.

[13]  Daniel J. B. Smith,et al.  Should we believe the results of ultraviolet–millimetre galaxy spectral energy distribution modelling? , 2015 .

[14]  owski,et al.  EXTINCTION AND NEBULAR LINE PROPERTIES OF A HERSCHEL-SELECTED LENSED DUSTY STARBURST AT z = 1.027 , 2015, The Astrophysical Journal.

[15]  C. D. Dowell,et al.  SOFIA science instruments: commissioning, upgrades and future opportunities , 2014, Astronomical Telescopes and Instrumentation.

[16]  S. Maddox,et al.  Herschel-ATLAS and ALMA - HATLAS J142935.3-002836, a lensed major merger at redshift 1.027 , 2014, 1406.4859.

[17]  S. Maddox,et al.  LENS MODELS OF HERSCHEL-SELECTED GALAXIES FROM HIGH-RESOLUTION NEAR-IR OBSERVATIONS , 2014, 1406.1487.

[18]  Alfred Krabbe,et al.  THE SOFIA OBSERVATORY AT THE START OF ROUTINE SCIENCE OPERATIONS: MISSION CAPABILITIES AND PERFORMANCE , 2014, 1405.7390.

[19]  V. A. Bruce,et al.  Determining the stellar masses of submillimetre galaxies: the critical importance of star formation histories , 2014, 1405.2335.

[20]  R. Davé,et al.  Parametrising Star Formation Histories , 2014, 1404.0402.

[21]  S. Maddox,et al.  Herschel-ATLAS: Properties of dusty massive galaxies at low and high redshifts , 2014, 1403.2994.

[22]  M. Boquien,et al.  Dust spectral energy distributions of nearby galaxies: an insight from the Herschel Reference Survey , 2014, 1402.3597.

[23]  G. Helou,et al.  A TWO-PARAMETER MODEL FOR THE INFRARED/SUBMILLIMETER/RADIO SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES AND ACTIVE GALACTIC NUCLEI , 2014, 1402.1495.

[24]  D. Narayanan,et al.  Dusty Star Forming Galaxies at High Redshift , 2014, 1402.1456.

[25]  D. Elbaz,et al.  POLYCYCLIC AROMATIC HYDROCARBON AND MID-INFRARED CONTINUUM EMISSION IN A z > 4 SUBMILLIMETER GALAXY , 2013, 1306.5235.

[26]  Technology of China,et al.  AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH: THE AGN FRACTION AND X-RAY PROPERTIES OF SUBMILLIMETER GALAXIES , 2013, 1310.6364.

[27]  P. P. van der Werf,et al.  GRAVITATIONAL LENS MODELS BASED ON SUBMILLIMETER ARRAY IMAGING OF HERSCHEL-SELECTED STRONGLY LENSED SUB-MILLIMETER GALAXIES AT z > 1.5 , 2013, 1309.0836.

[28]  S. Meyer,et al.  Dusty starburst galaxies in the early Universe as revealed by gravitational lensing , 2013, Nature.

[29]  L. Pozzetti,et al.  Panchromatic spectral energy distributions of Herschel sources , 2013, 1301.4496.

[30]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[31]  P. Hopkins,et al.  Star formation in galaxy mergers with realistic models of stellar feedback and the interstellar medium , 2012, 1206.0011.

[32]  B. Weiner,et al.  THE RISE AND FALL OF THE STAR FORMATION HISTORIES OF BLUE GALAXIES AT REDSHIFTS 0.2 < z < 1.4 , 2012, 1210.0543.

[33]  D. Elbaz,et al.  GOODS-HERSCHEL: IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT , 2012, The Astrophysical Journal.

[34]  D. Calzetti,et al.  MODELING DUST AND STARLIGHT IN GALAXIES OBSERVED BY SPITZER AND HERSCHEL: NGC 628 AND NGC 6946 , 2012, 1207.4186.

[35]  A. Franceschini,et al.  Smooth and clumpy dust distributions in AGN: a direct comparison of two commonly explored infrared emission models , 2012, 1207.2668.

[36]  C. Steidel,et al.  THE CHARACTERISTIC STAR FORMATION HISTORIES OF GALAXIES AT REDSHIFTS z ∼ 2–7 , 2012, 1205.0555.

[37]  D. Alexander,et al.  What drives the growth of black holes , 2011, 1112.1949.

[38]  H. Ferguson,et al.  THE ESTIMATION OF STAR FORMATION RATES AND STELLAR POPULATION AGES OF HIGH-REDSHIFT GALAXIES FROM BROADBAND PHOTOMETRY , 2010, 1010.1966.

[39]  Ž. Ivezić,et al.  A CLOSER VIEW OF THE RADIO–FIR CORRELATION: DISENTANGLING THE CONTRIBUTIONS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY , 2010, 1010.0435.

[40]  R. J. Ivison,et al.  Tracing the molecular gas in distant submillimetre galaxies via CO(1-0) imaging with the EVLA , 2010, 1009.0749.

[41]  Edinburgh,et al.  The LABOCA survey of the Extended Chandra Deep Field South: A photometric redshift survey of submillimetre galaxies , 2010, 1006.2137.

[42]  A. Cimatti,et al.  The far-infrared/radio correlation as probed by Herschel , 2010, 1005.1072.

[43]  S. Maddox,et al.  The Herschel ATLAS , 2009, 0910.4279.

[44]  V. Buat,et al.  Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample , 2009, 0909.5439.

[45]  E. L. Wright,et al.  THE SPITZER DEEP, WIDE-FIELD SURVEY , 2009, 0906.0024.

[46]  A. Kovacs,et al.  Scanning strategies for imaging arrays , 2008, Astronomical Telescopes + Instrumentation.

[47]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[48]  D. Elbaz,et al.  Mid-Infrared Spectral Diagnosis of Submillimeter Galaxies , 2007, 0711.1553.

[49]  M. Rowan-Robinson,et al.  The Herschel Multi-tiered Extragalactic Survey: HerMES , 2012, 1203.2562.

[50]  -INAF,et al.  Evolution of asymptotic giant branch stars. I. Updated synthetic TP-AGB models and their basic calibration , 2007, astro-ph/0703139.

[51]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[52]  R. Peletier,et al.  Stellar Populations as Building Blocks of Galaxies , 2007 .

[53]  Padova,et al.  Revisiting the infrared spectra of active galactic nuclei with a new torus emission model , 2005, astro-ph/0511428.

[54]  F. Bertoldi,et al.  High-Resolution Millimeter Imaging of Submillimeter Galaxies , 2005 .

[55]  P.cox,et al.  High-resolution Millimeter Imaging of Submillimeter Galaxies , 2005, astro-ph/0511319.

[56]  W. Brandt,et al.  The X-Ray Spectral Properties of SCUBA Galaxies , 2005, astro-ph/0506608.

[57]  C. Kochanek,et al.  XBootes: An X-Ray Survey of the NDWFS Bootes Field. I. Overview and Initial Results , 2005, astro-ph/0504084.

[58]  D. M. Alexander,et al.  A Chandra observation of the z= 2.285 galaxy FSC 10214+4724: evidence for a Compton-thick quasar? , 2004, astro-ph/0411289.

[59]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[60]  Gilles Chabrier,et al.  The Galactic Disk Mass Function: Reconciliation of the Hubble Space Telescope and Nearby Determinations , 2003, astro-ph/0302511.

[61]  E. Bell Estimating Star Formation Rates from Infrared and Radio Luminosities: The Origin of the Radio-Infrared Correlation , 2002, astro-ph/0212121.

[62]  M. Yun,et al.  Radio Properties of Infrared-selected Galaxies in the IRAS 2 Jy Sample , 2001, astro-ph/0102154.

[63]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2000, astro-ph/0011014.

[64]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[65]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[66]  M. Malkan,et al.  The Radio Properties of Seyfert Galaxies in the 12 Micron and CfA Samples , 1996, astro-ph/9606178.