An SIRS model with a nonlinear incidence rate

The global dynamics of an SIRS model with a nonlinear incidence rate is investigated. We establish a threshold for a disease to be extinct or endemic, analyze the existence and asymptotic stability of equilibria, and verify the existence of bistable states, i.e., a stable disease free equilibrium and a stable endemic equilibrium or a stable limit cycle. In particular, we find that the model admits stability switches as a parameter changes. We also investigate the backward bifurcation, the Hopf bifurcation and Bogdanov–Takens bifurcation and obtain the Hopf bifurcation criteria and Bogdanov–Takens bifurcation curves, which are important for making strategies for controlling a disease.

[1]  Shigui Ruan,et al.  Global Analysis in a Predator-Prey System with Nonmonotonic Functional Response , 2001, SIAM J. Appl. Math..

[2]  Xiao-Qiang Zhao,et al.  An epidemic model in a patchy environment. , 2004, Mathematical biosciences.

[3]  P. van den Driessche,et al.  Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population , 2003 .

[4]  Y. Iwasa,et al.  Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models , 1986, Journal of mathematical biology.

[5]  P van den Driessche,et al.  Models for transmission of disease with immigration of infectives. , 2001, Mathematical biosciences.

[6]  Zhilan Feng,et al.  Homoclinic Bifurcation in an SIQR Model for Childhood Diseases , 2000 .

[7]  Shigui Ruan,et al.  Dynamical behavior of an epidemic model with a nonlinear incidence rate , 2003 .

[8]  Seyed M. Moghadas,et al.  A qualitative study of a vaccination model with non-linear incidence , 2003, Appl. Math. Comput..

[9]  P. Driessche,et al.  A disease transmission model in a nonconstant population , 1993, Journal of mathematical biology.

[10]  G. Serio,et al.  A generalization of the Kermack-McKendrick deterministic epidemic model☆ , 1978 .

[11]  Zhien Ma,et al.  Global dynamics of an SEIR epidemic model with saturating contact rate. , 2003, Mathematical biosciences.

[12]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[13]  James Watmough,et al.  A simple SIS epidemic model with a backward bifurcation , 2000, Journal of mathematical biology.

[14]  Xianning Liu,et al.  Complex dynamics of Holling type II Lotka–Volterra predator–prey system with impulsive perturbations on the predator ☆ , 2003 .

[15]  Wendi Wang,et al.  A discrete epidemic model with stage structure , 2005 .

[16]  A. Margheri,et al.  Some examples of persistence in epidemiological models , 2003, Journal of mathematical biology.

[17]  S. Levin,et al.  Dynamical behavior of epidemiological models with nonlinear incidence rates , 1987, Journal of mathematical biology.

[18]  M. E. Alexander,et al.  Periodicity in an epidemic model with a generalized non-linear incidence. , 2004, Mathematical biosciences.

[19]  Jin Zhen,et al.  Global stability of an SEI epidemic model , 2004 .

[20]  S. M. Moghadas,et al.  Analysis of an epidemic model with bistable equilibria using the Poincaré index , 2004, Appl. Math. Comput..

[21]  M. Lizana,et al.  Multiparametric bifurcations for a model in epidemiology , 1996, Journal of mathematical biology.

[22]  Xianning Liu,et al.  Viral infection model with periodic lytic immune response , 2006 .

[23]  P. Glendinning,et al.  Melnikov analysis of chaos in a simple epidemiological model , 1997, Journal of mathematical biology.