Controlling Material Reactivity Using Architecture

3D-printing methods are used to generate reactive material architectures. Several geometric parameters are observed to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. The architecture offers an additional route to control, at will, the energy release rate in reactive composite materials.

[1]  L. Valdevit,et al.  Ultralight Metallic Microlattices , 2011, Science.

[2]  S. Son,et al.  Reaction Propagation of Four Nanoscale Energetic Composites (Al/MoO3, Al/WO3, Al/CuO, and B12O3) , 2007 .

[3]  Timothy P. Weihs,et al.  Self-propagating formation reactions in Nb:Si multilayers , 1999 .

[4]  J. A. Martin,et al.  Oxidation behavior of aluminum nanopowders , 1995 .

[5]  M. Worsley,et al.  Electrophoretic deposition of binary energetic composites , 2012 .

[6]  Jongmin Shim,et al.  3D Soft Metamaterials with Negative Poisson's Ratio , 2013, Advanced materials.

[7]  Frank Greer,et al.  Fabrication and deformation of three-dimensional hollow ceramic nanostructures. , 2013, Nature materials.

[8]  M. Wegener,et al.  An elasto-mechanical unfeelability cloak made of pentamode metamaterials , 2014, Nature Communications.

[9]  R. Yetter,et al.  Combustion of Nanoscale Al/MoO3 Thermite in Microchannels , 2007 .

[10]  E. Duoss,et al.  Electrophoretic deposition of thermites onto micro-engineered electrodes prepared by direct-ink writing. , 2013, The journal of physical chemistry. B.

[11]  M. Zachariah,et al.  Tuning the reactivity of energetic nanoparticles by creation of a core-shell nanostructure. , 2005, Nano letters.

[12]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[13]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[14]  A. Gash,et al.  Electrophoretic deposition and mechanistic studies of nano-Al/CuO thermites , 2012 .

[15]  John J. Vericella,et al.  Three‐Dimensional Printing of Elastomeric, Cellular Architectures with Negative Stiffness , 2014 .

[16]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[17]  Mitra L Taheri,et al.  Imaging of Transient Structures Using Nanosecond in Situ TEM , 2008, Science.

[18]  Deepak Kapoor,et al.  Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites , 2007 .

[19]  E. Dreizin,et al.  Fully dense nano-composite energetic powders prepared by arrested reactive milling , 2005 .

[20]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[21]  L. Fried,et al.  Chemical Equilibrium Detonation , 2012 .

[22]  Howon Lee,et al.  Ultralight, ultrastiff mechanical metamaterials , 2014, Science.

[23]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[24]  K. Bertoldi,et al.  Negative Poisson's Ratio Behavior Induced by an Elastic Instability , 2010, Advanced materials.

[25]  R. Yetter,et al.  Control of nanoenergetics through organized microstructures , 2012 .