Unified Geometric Multigrid Algorithm for Hybridized High-Order Finite Element Methods
暂无分享,去创建一个
Tim Wildey | Tan Bui-Thanh | Sriramkrishnan Muralikrishnan | T. Bui-Thanh | T. Wildey | Sriramkrishnan Muralikrishnan
[1] J. Dendy. Black box multigrid , 1982 .
[2] V. Venkatakrishnan,et al. Agglomeration multigrid for the Euler equations , 1995 .
[3] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[4] Francisco-Javier Sayas,et al. A projection-based error analysis of HDG methods , 2010, Math. Comput..
[5] D. Braess,et al. Multigrid methods for nonconforming finite element methods , 1990 .
[6] Bernardo Cockburn,et al. A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems , 2004, SIAM J. Numer. Anal..
[7] Jean E. Roberts,et al. Mixed and hybrid methods , 1991 .
[8] Tsuyoshi Murata,et al. {m , 1934, ACML.
[9] M. Berger,et al. Unstructured multigrid through agglomeration , 1993 .
[10] Tan Bui-Thanh,et al. Construction and Analysis of HDG Methods for Linearized Shallow Water Equations , 2016, SIAM J. Sci. Comput..
[11] P. M. De Zeeuw,et al. Matrix-dependent prolongations and restrictions in a blackbox multigrid solver , 1990 .
[12] M. Wheeler,et al. Multigrid on the interface for mortar mixed finite element methods for elliptic problems , 2000 .
[13] Barry Smith,et al. Domain Decomposition Methods for Partial Differential Equations , 1997 .
[14] Martin Kronbichler,et al. A Performance Comparison of Continuous and Discontinuous Galerkin Methods with Fast Multigrid Solvers , 2016, SIAM J. Sci. Comput..
[15] Raytcho D. Lazarov,et al. Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..
[16] Jian Shen,et al. The analysis of multigrid algorithms for cell centered finite difference methods , 1996, Adv. Comput. Math..
[17] A. George. Nested Dissection of a Regular Finite Element Mesh , 1973 .
[18] Do Y. Kwak. V-Cycle Multigrid for Cell-Centered Finite Differences , 1999, SIAM J. Sci. Comput..
[19] Wolfgang Dahmen,et al. A Multigrid Algorithm for the Mortar Finite Element Method , 1999, SIAM J. Numer. Anal..
[20] J. Pasciak,et al. The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms , 1991 .
[21] Joseph E. Pasciak,et al. Uniform convergence estimates for multigrid V-cycle algorithms with less than full elliptic regularity , 1992 .
[22] Long Chen,et al. An auxiliary space multigrid preconditioner for the weak Galerkin method , 2014, Comput. Math. Appl..
[23] B. T. Helenbrook,et al. Application of “ p ”-multigrid to discontinuous Galerkin formulations of the Poisson equation , 2008 .
[24] Bernardo Cockburn,et al. Multigrid for an HDG method , 2013, IMA Journal of Numerical Analysis.
[25] D. Arnold,et al. Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .
[26] Jonathan J. Hu,et al. Parallel multigrid smoothing: polynomial versus Gauss--Seidel , 2003 .
[27] Jayadeep Gopalakrishnan,et al. A convergent multigrid cycle for the hybridized mixed method , 2009, Numer. Linear Algebra Appl..
[28] Susanne C. Brenner. A multigrid algorithm for the lowest-order Raviart-Thomas mixed triangular finite element method , 1992 .
[29] H. Egger,et al. Analysis of hybrid discontinuous Galerkin methods for incompressible flow problems , 2012 .
[30] Mary F. Wheeler,et al. Coupling Discontinuous Galerkin and Mixed Finite Element Discretizations using Mortar Finite Elements , 2008, SIAM J. Numer. Anal..
[31] Bo Dong,et al. A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..
[32] Mary F. Wheeler,et al. A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[33] Arnold Reusken,et al. Multigrid with matrix-dependent transfer operators for a singular perturbation problem , 1993, Computing.
[34] Tan Bui-Thanh,et al. From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations , 2015, J. Comput. Phys..
[35] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[36] Hamilton-Jacobi Equations,et al. Multigrid Methods for , 2011 .
[37] Hari Sundar,et al. Comparison of multigrid algorithms for high‐order continuous finite element discretizations , 2014, Numer. Linear Algebra Appl..
[38] Junping Wang,et al. A hybridized formulation for the weak Galerkin mixed finite element method , 2016, J. Comput. Appl. Math..