Unified Geometric Multigrid Algorithm for Hybridized High-Order Finite Element Methods

We consider a standard elliptic partial differential equation and propose a geometric multigrid algorithm based on Dirichlet-to-Neumann (DtN) maps for hybridized high-order finite element methods. The proposed unified approach is applicable to any locally conservative hybridized finite element method including multinumerics with different hybridized methods in different parts of the domain. For these methods, the linear system involves only the unknowns residing on the mesh skeleton, and constructing intergrid transfer operators is therefore not trivial. The key to our geometric multigrid algorithm is the physics-based energy-preserving intergrid transfer operators which depend only on the fine scale DtN maps. Thanks to these operators, we completely avoid upscaling of parameters and no information regarding subgrid physics is explicitly required on coarse meshes. Moreover, our algorithm is agglomeration-based and can straightforwardly handle unstructured meshes. We perform extensive numerical studies with hybridized mixed methods, hybridized discontinuous Galerkin method, weak Galerkin method, and a hybridized version of interior penalty discontinuous Galerkin methods on a range of elliptic problems including subsurface flow through highly heterogeneous porous media. We compare the performance of different smoothers and analyze the effect of stabilization parameters on the scalability of the multigrid algorithm.

[1]  J. Dendy Black box multigrid , 1982 .

[2]  V. Venkatakrishnan,et al.  Agglomeration multigrid for the Euler equations , 1995 .

[3]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[4]  Francisco-Javier Sayas,et al.  A projection-based error analysis of HDG methods , 2010, Math. Comput..

[5]  D. Braess,et al.  Multigrid methods for nonconforming finite element methods , 1990 .

[6]  Bernardo Cockburn,et al.  A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems , 2004, SIAM J. Numer. Anal..

[7]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[8]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[9]  M. Berger,et al.  Unstructured multigrid through agglomeration , 1993 .

[10]  Tan Bui-Thanh,et al.  Construction and Analysis of HDG Methods for Linearized Shallow Water Equations , 2016, SIAM J. Sci. Comput..

[11]  P. M. De Zeeuw,et al.  Matrix-dependent prolongations and restrictions in a blackbox multigrid solver , 1990 .

[12]  M. Wheeler,et al.  Multigrid on the interface for mortar mixed finite element methods for elliptic problems , 2000 .

[13]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[14]  Martin Kronbichler,et al.  A Performance Comparison of Continuous and Discontinuous Galerkin Methods with Fast Multigrid Solvers , 2016, SIAM J. Sci. Comput..

[15]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[16]  Jian Shen,et al.  The analysis of multigrid algorithms for cell centered finite difference methods , 1996, Adv. Comput. Math..

[17]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[18]  Do Y. Kwak V-Cycle Multigrid for Cell-Centered Finite Differences , 1999, SIAM J. Sci. Comput..

[19]  Wolfgang Dahmen,et al.  A Multigrid Algorithm for the Mortar Finite Element Method , 1999, SIAM J. Numer. Anal..

[20]  J. Pasciak,et al.  The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms , 1991 .

[21]  Joseph E. Pasciak,et al.  Uniform convergence estimates for multigrid V-cycle algorithms with less than full elliptic regularity , 1992 .

[22]  Long Chen,et al.  An auxiliary space multigrid preconditioner for the weak Galerkin method , 2014, Comput. Math. Appl..

[23]  B. T. Helenbrook,et al.  Application of “ p ”-multigrid to discontinuous Galerkin formulations of the Poisson equation , 2008 .

[24]  Bernardo Cockburn,et al.  Multigrid for an HDG method , 2013, IMA Journal of Numerical Analysis.

[25]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[26]  Jonathan J. Hu,et al.  Parallel multigrid smoothing: polynomial versus Gauss--Seidel , 2003 .

[27]  Jayadeep Gopalakrishnan,et al.  A convergent multigrid cycle for the hybridized mixed method , 2009, Numer. Linear Algebra Appl..

[28]  Susanne C. Brenner A multigrid algorithm for the lowest-order Raviart-Thomas mixed triangular finite element method , 1992 .

[29]  H. Egger,et al.  Analysis of hybrid discontinuous Galerkin methods for incompressible flow problems , 2012 .

[30]  Mary F. Wheeler,et al.  Coupling Discontinuous Galerkin and Mixed Finite Element Discretizations using Mortar Finite Elements , 2008, SIAM J. Numer. Anal..

[31]  Bo Dong,et al.  A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..

[32]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[33]  Arnold Reusken,et al.  Multigrid with matrix-dependent transfer operators for a singular perturbation problem , 1993, Computing.

[34]  Tan Bui-Thanh,et al.  From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations , 2015, J. Comput. Phys..

[35]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[36]  Hamilton-Jacobi Equations,et al.  Multigrid Methods for , 2011 .

[37]  Hari Sundar,et al.  Comparison of multigrid algorithms for high‐order continuous finite element discretizations , 2014, Numer. Linear Algebra Appl..

[38]  Junping Wang,et al.  A hybridized formulation for the weak Galerkin mixed finite element method , 2016, J. Comput. Appl. Math..