Achieving ultrafine grain size in Mg–Al–Zn alloy by friction stir processing

Ultrafine-grained (UFG) microstructures with an average grain size of 100–300 nm are achieved in solution-hardened AZ31 Mg–Al–Zn alloy prepared by friction stir processing equipped with a rapid heat sink. The mean hardness of the UFG region reaches ∼120Hv, which is more than twice as high as that of the AZ31 matrix. The grain refinement kinetics are analyzed and the results are self-consistent.

[1]  M. Mayo,et al.  Structure and Mechanical Behavior of Bulk Nanocrystalline Materials , 1999 .

[2]  L. Murr,et al.  Friction-stir welding of magnesium alloy AZ31B , 2002 .

[3]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[4]  I. Shigematsu,et al.  Mechanical properties of fine-grained aluminum alloy produced by friction stir process , 2003 .

[5]  Y. Morisada,et al.  MWCNTs/AZ31 surface composites fabricated by friction stir processing , 2006 .

[6]  T. Langdon,et al.  Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation , 2001 .

[7]  M. Pérez-Prado,et al.  Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling , 2005 .

[8]  T. Nelson,et al.  Friction stir processing of large-area bulk UFG aluminum alloys , 2005 .

[9]  Y. Morisada,et al.  Nanocrystallized magnesium alloy – uniform dispersion of C60 molecules , 2006 .

[10]  R. Valiev,et al.  Investigations and applications of severe plastic deformation , 2000 .

[11]  T. Mukai,et al.  Grain Size Control of Commercial Wrought Mg-Al-Zn Alloys Utilizing Dynamic Recrystallization , 2001 .

[12]  D. G. Morris,et al.  Ductility of Nanostructured Materials , 1999 .

[13]  M. Pérez-Prado,et al.  Grain refinement of Mg¿Al¿Zn alloys via accumulative roll bonding , 2004 .

[14]  R. Valiev,et al.  Low-temperature superplasticity in nanostructured nickel and metal alloys , 1999, Nature.

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  J. C. Huang,et al.  High Strain Rate Superplasticity of Mg Based Composites Fabricated by Friction Stir Processing , 2006 .

[17]  Yutaka S. Sato,et al.  Friction stir welding of ultrafine grained Al alloy 1100 produced by accumulative roll-bonding , 2004 .

[18]  J. C. Huang,et al.  Mg based nano-composites fabricated by friction stir processing , 2006 .

[19]  Shyong Lee,et al.  Grain refining of magnesium alloy AZ31 by rolling , 2003 .

[20]  Li-Hui Chen,et al.  Microstructures and high temperature mechanical properties of friction stirred AZ31–Mg alloy , 2007 .

[21]  Z. Ma,et al.  Enhanced mechanical properties of Mg–Al–Zn cast alloy via friction stir processing , 2007 .

[22]  P. Liaw,et al.  Texture variation and its influence on the tensile behavior of a friction-stir processed magnesium alloy , 2006 .

[23]  J. C. Huang,et al.  Relationship between grain size and Zener¿Holloman parameter during friction stir processing in AZ31 Mg alloys , 2004 .

[24]  J. C. Huang,et al.  On the Hardening of Friction Stir Processed Mg-AZ31 Based Composites with 5–20% Nano-ZrO2 and Nano-SiO2 Particles , 2006 .

[25]  J. C. Huang,et al.  Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP , 2005 .

[26]  A. Mukherjee,et al.  High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy , 1999 .

[27]  T. Langdon,et al.  Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP , 2003 .